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Abstract 

Solid-state NMR is often applied to study many aspects of membrane proteins in 

biologically relevant model membrane systems including the structure, dynamics, and 

oligomerization. Solid-state NMR is commonly used for membrane proteins in lipid 

bilayers because these systems are difficult to study by other structure specific 

biophysical methods such as x-ray crystallography and solution NMR. In this thesis, we 

apply solid-state NMR to explore the properties of arginine rich membrane peptides in 

unaligned lipid vesicles and aligned lipid bilayers. Multiple solid-state NMR techniques 

have also been applied to study water-peptide, lipid-peptide and water-lipid interactions 

in these systems. 

The antimicrobial peptide tachyplesin I (TP-I) is an amphipathic peptide 

constrained to a β-hairpin structure by two disulfide bonds. Here it is studied extensively 

along with its linear mutants that had the cysteines replaced by other amino acids. Wild 

type TP-I was found to be a linear β-hairpin that is inserted in the interfacial region of the 

lipid bilayer with an orientation parallel to the bilayer surface. TP-I was found to severely 

disrupt bacterial mimicking POPE/POPG bilayers by micellizing the bilayers while not 

disrupting mammalian mimetic bilayers. The linear mutants that had alanine (TPA4) and 

tyrosine (TPY4) replacing the cysteines caused non-selective disruption without 

micellization of the bilayer. The mechanism of action of these peptides was explored by 

various magic angle spinning (MAS) experiments and it was found that the antimicrobial 

activity of these peptides did not correlate with structure or insertion depth, but did 

correlate with the dynamics of the peptide. The active peptides, TP-I and TPF4, are more 

mobile in the bilayer than the inactive peptide TPA4 is, suggesting that large-amplitude 

motions are critical to the antimicrobial activity of the tachyplesins. 

The isolated S4 helix from the voltage gated voltage sensor membrane protein 

KvAP is another arginine rich peptide studied. It is a mostly hydrophobic α-helical 

sequence with 4 arginine residues evenly spaced along the helix. The peptide was 

determined to have a tilt angle of 40 ± 5° and a rotation angle of 280 ± 20° in lipid 

bilayers. Based on lipid 31P to peptide 13C distance measurements the peptide was found 

to cause membrane thinning of ~9 Å. This membrane thinning likely occurs to allow the 
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charged sidechains of arginine to access the lipid-water interface and reduce contact with 

the hydrophobic bilayer core. 

 Lipid-water interactions in vesicles were investigated by a 2D 31P-1H correlation 

experiment. Chemical exchange was found to be necessary for magnetization transfer 

from water to lipid, as observed by water-lipid cross peaks only in lipids with labile 

protons. The presence of charged peptides in the bilayer was found to shorten the water 
1H T2. This was attributed to slow peptide motion, intermolecular hydrogen bonding, and 

chemical exchange with the labile protons on the peptide. 

We developed a new method to observed heteronuclear spectra of uniaxial 

rotating lipids and peptides in lipid vesicles by combining moderate MAS and very low 

power 1H decoupling. This technique opens the door for studying membrane peptides on 

solution NMR spectrometers that are not equipped with expensive high-power 1H 

amplifiers. 
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Chapter 1 

Introduction 

 

Dynamics in lipid bilayers 

Lipid dynamics in membranes 

Vesicles composed of pure lipids are used extensively as model systems for 

studies on membrane proteins because they closely mimic the biological bilayer (1). 

These vesicles are liquid crystals which have extensive dynamics. Internal motions of the 

lipid molecule in the bilayer occur with rates that exceed the frequency shifts or spectra 

splittings produced by orientation-dependent NMR interactions, these include trans-

gauche isomerizations which have large amplitude rotations leading to low order 

parameters with correlation times on the order of 10-9-10-10 s. (2). There are also smaller 

amplitude torsional oscillations that are on a very fast time scale (3). Overall motions of 

lipids include tumbling of the whole vesicle, which have correlation times of  10-6 to 10-4 

s (4) depending on the size of the vesicle, uniaxial rotation around the bilayer normal 

with a correlation time of ~2 x 10-8 s, (3) and lateral diffusion in the bilayer plane with a 

rate of 1 x 10-7  to 5 x 10-8 cm2/s (4, 5). It is important to note that lateral diffusion of the 

lipids has little effect on the NMR spectra unless pulsed field gradient experiments are 

used (6). Also, while the anisotropic rotation around the membrane normal is fast enough 

to scale chemical shift interaction which is on the order of ~3-10 kHz and the dipolar 

couplings which are ~10-20 kHz, the isotropic tumbling of the vesicles is too slow to 

affect the NMR spectra. Therefore, even though membrane samples have high water 

content and are not rigid solids the isotropic motion of the vesicles is slow enough that 

NMR experiments on these systems are in the realm of solid-state NMR spectroscopy. 

Internal and overall lipid motions lead to couplings reduced by rotational 

averaging, corresponding to order parameters that are less than the rigid limit of one. 

Order parameters vary across the lipid molecule in the bilayer. For most lipids the order 

parameter will be lowest at the end of the headgroup and the end of the acyl chain, and 

highest around the most constrained part of the lipid molecule, which is the glycerol 

backbone (7). When considering the effect of chain length and unsaturation on the order 
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parameters, the temperature with respect to the liquid-crystalline phase transition 

temperature (Tm) must be taken into account. If the reduced temperature ( mTTT −=∆ , 

where T is the temperature of the experiment and ∆T is the reduced temperature) of the 

membrane is kept constant, changing the length and saturation of the lipid chain will 

change the order parameter. For example, DMPC has two saturated 14 carbon chains and 

a maximum bond order parameter of  ~0.25 (8) while DPPC has two saturated 16 carbon 

chains and a maximum bond order parameter of ~0.45 (9). This can be compared to the 

~0.25 bond order parameter observed in lecithin which has chains of similar length to 

DPPC but includes double bonds (10). Inclusion of rigid molecules in the membrane also 

increases the rigidity of the bilayer. When cholesterol is included at 30% in DMPC 

bilayers the order parameter of the lipid increases by roughly a factor of two (9). Not 

surprisingly, order parameters are closely tied to temperature. In the liquid-crystalline 

phase raising the temperature by 20° C lowers the order parameter by ~20-40%  (9, 11), 

with a more dramatic increase of the order parameter when moving from the liquid-

crystal phase to the gel phase of the lipid. Over the liquid-crystalline to gel transition of 

DPPC the bond order parameter increases by a factor of 2 (9, 12). 

 

Peptide dynamics in membranes 

Membrane proteins have internal motions that are quite fast, on the time scale of 

tens of nanoseconds and faster (13-15). These internal motions are mostly of small 

amplitude in ordered regions like α-helices and β-sheets, but can have quite large 

amplitude in unordered segments such as turns and loops. The high mobility in the 

unordered regions compromise dipolar driven NMR experiments (16), and this motion 

can leads to loss of cross-polarization signal (17) as well as the loss of cross peaks in 

dipolar driven correlation experiments. Since correlation and magnetization transfer do 

not work with dipolar techniques in these unordered regions other methods are required. 

For mobile sections of proteins direct polarization can be used along with J-coupling 

mediated sequences (18, 19), but these experiments are difficult due to the weak J-

coupling interaction and relatively short 1H and 13C T2 values in lipid vesicle systems. 
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Alternatively, these motions can be frozen out by cooling the sample to the point where 

the dipolar based experiments can be used.  

Peptides in lipid bilayers often have overall uniaxial motion faster than the NMR 

chemical shift interaction (20-25). The uniaxial motional rate for rigid bodies in lipid 

membranes can be predicted by the Saffman-Delbruck equation (26), and for many 

relatively short peptides (<30 residues) the rate of motion is estimated to be >1 x 105 Hz 

which is faster than the NH dipolar, CH dipolar, and chemical shift interactions (21). In 

practice, motions on this time scale lead to partial averaging of the smaller NMR 

interactions, which can give sharp lines in experiments on aligned samples (20), lead to 

simple ‘η=0’ lineshapes for peptides in unaligned vesicle samples, and reduce 

homonuclear dipolar coupling terms in the Hamiltonian describing these systems. Fast 

uniaxial motion and the low order parameters of lipids and peptides in the liquid 

crystalline phase of lipids are exploited several times in this work, notably chapters 6 and 

9. 

 

Energetics of amphipathic peptide-membrane interaction 

Hydrophobicity scales 

 The primary structure of membrane proteins has been used for a long time to 

predict membrane spanning domains based on the hydrophobicity of the constituent 

amino acids (27-29). The concept is that membrane spanning domains must have 

relatively long (~30 residues) hydrophobic stretches to span the bilayer, and these 

membrane spanning sections of the sequence can be identified in the primary sequence 

by looking at the hydrophobicity of each amino acid sidechain. This method of 

determining membrane spanning domains is quite effective in large membrane proteins, 

but is not as useful for the short amphipathic peptides considered in this work, for several 

reasons. First, the peptides here are too short to span the membrane. Secondly, they are 

amphipathic, which means that they do not have the high hydrophobicity expected for 

membrane spanning motifs, and third, they are short enough that they can be visualized 

by simpler means. For these reasons, it is easier to identify amphipathic distributions on 

the secondary structure either by helical wheel diagrams for α-helices (30) or by 
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amphipathic topology plots for β-sheet structures (31, 32). When applied to amphipathic 

peptides in the lipid bilayer these simple visual tools can be used to predict peptide 

topology in the membrane (33, 34). 

 

Free energy of peptide insertion into the bilayer 

The free energy of inserting amino acid sidechains without the backbone, amino 

acids, terminal groups, and peptide bonds into the membrane interface has been measured 

to predict whether peptides will partition into the bilayer (35-38). The interfacial part of 

the bilayer is a hydrophilic environment including the phosphate, glycerol and carbonyl 

regions of the lipids that transition from the bilayer core to surrounding water. 

Thermodynamic measurements of peptide partitioning from water to bilayer are 

considered to be for the transition from water to bilayer interface because the interface is 

where protein folding occurs, before the peptide moves into the low dielectric part of the 

bilayer. These findings have shown that aromatic residues are energetically favored to 

insert into the bilayer surface by 1-2 kcal/mol, while charged residues have a penalty of 

1-2 kcal/mol. Interestingly, the cost of inserting non-hydrogen bonded peptide bonds into 

a POPC interface is 1.2 kcal/mol, similar to the cost of partitioning a charged sidechain 

(39). Thus the thermodynamic values for a non-hydrogen bonded peptide explain why 

proteins often adopt strong secondary structures when they are in the bilayer, most 

peptide domains that cross the membrane are either α-helical or in β-barrels (39-45). The 

physical principles behind folding and membrane insertion of peptides are important to 

consider when thinking about the peptide-lipid interactions covered in this work. 

 

Antimicrobial peptides 

Antimicrobial peptides (AMPs) are a first line of immune defense found in 

multicelluar organisms. They are short peptides, usually no longer than 50 amino acids 

and exhibit fast killing of a broad spectrum of microbes including bacteria and fungi (46). 

They are found throughout the organism, especially in the epithelial tissue, blood, 

hemolymph and mucus membranes. Since these natural antibiotics require little response 

time to kill microbes when compared to specific adaptive immune responses, the 
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organism that produces them is better protected from infection. AMPs have a very 

diverse set of primary and secondary structures, but most are amphipathic, consisting of 

hydrophobic and charged residues. Because of their diverse nature, these peptides are 

often categorized by secondary structure (47). α-helical peptides such as magainin 2 (45) 

isolated from frogs and cecropin A (44) found in silk moths. β-sheet structures that are 

constrained by disulfide bonds represent another class, which includes tachyplesin I (48) 

and protegrin 1 (49) found in horseshoe crabs and pigs, respectively. Another class 

consists of non-helical linear peptides such as PR-39 (50) which is derived from pigs and 

is very rich in proline and arginine. 

Permeablization of the microbial cell wall is the accepted killing mechanism for 

AMPs. The cell wall makes sense as a target for several reasons: the mechanism of action 

for AMPs must be selective for microbes in the presence of host cells, must quickly kill 

invading cells, must be active against a wide spectrum of microbes, and must avoid 

resistance buildup. Since microbes tend to have negatively charged lipids in the outer 

leaflets of their membranes, the inclusion of multiple positive charges on AMPs will 

concentrate the peptides on the invading cell’s surface and allow selectivity between host 

and invader. Mammalian, insect, and plant cells tend to have neutral lipids in the outer 

leaflet so that electrostatics do not lead to a high concentration of AMP on the host cells. 

Since the mechanism of action relies on the lipid identity in the cell membranes, 

resistance to AMPs is expected to be difficult to develop. Further, AMPs do not need to 

enter the cell to cause cell death, so this mechanism can cause cell death in the order of 

minutes. 

While destroying cell viability by depolarizing the cell membrane is accepted as 

the mechanism of action, there is less agreement about how exactly these short 

amphipathic peptides accomplish this. There are several commonly suggested 

mechanisms, including the barrel-stave, the torridal pore, the carpet, and the in-plane 

diffusion models (34). All these mechanisms have as the first step a concentration of 

AMPs on the microbial membrane surface due to electrostatic interactions between the 

charges on the lipids and the sidechains in the peptides. From this step the mechanisms 

differ. The barrel-stave model, which involves several peptides forming a barrel to span 
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the lipid bilayer, has been proposed to explain the behavior of alamethicin (34, 51). The 

torridal pore model, in which several amphipathic peptides come together with lipids to 

form a stable channel, has been shown to occur for protegrin-1 (52, 53). In the carpet 

model peptides first assemble on the bilayer surface and once a critical concentration is 

reached, the membrane starts to leak. The carpet model has been proposed to explain how 

AMPs which are either too short to form transmembrane pores (54) or are oriented 

parallel to the surface (55) can cause leakage of cell contents. Another model is the in-

plane diffusion model (34), in which peptides that are surface bound cause areas of local 

negative curvature strain. As these peptides diffuse about the membrane surface the areas 

of local curvature strain overlap causing enough disruption to form transient pores 

through the membrane which leads to the loss of cell viability. This model avoids the 

formation of energetically unfavorable aggregates of highly charged peptides and 

explains the leakage caused by short peptides at concentrations lower than those required 

by the carpet model. 

 

Thesis Organization 

 Solid-state NMR studies on lipid membranes and membrane bound peptides are 

presented in this thesis. Chapter 2 explains in detail two solid-state NMR techniques that 

are commonly used to study the orientation and topology of membrane bound peptides, 

the input codes for simulating the data obtained from these experiments are included in 

appendix D. Chapter 3 explores the interaction of tachyplesin I (TP) and linear TP 

mutants with aligned lipid bilayers by 31P NMR. We found that TP-I selectively disrupts 

anionic POPE/POPG membranes causing micellation while leaving neutral bilayers, 

cholesterol containing membranes and anionic POPC/POPG bilayers undisturbed. The 

linear mutants were found to cause disruption, but not micellization, in a non-selective 

manner. These findings are consistent with TP-I and the mutants having different 

mechanisms of action. Chapter 4 explores the structure of TP-I, where it was found to 

form a straight β-hairpin oriented parallel to the membrane at the water-bilayer interface. 

In chapter 5 the secondary structure, insertion state and dynamics of TP-I and linear 

mutants are studied. Here it was determined that peptide dynamics correlated with the 
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antimicrobial activity. TPA4, the least active mutant, was immobile in the membrane, 

while the more active mutant TPF4 and the wild-type TP-I were very mobile. It was 

proposed that molecular motion is requisite for antimicrobial activity. In chapter 6, TP-I 

was shown to undergo fast uniaxial motion, then this motion was used to determine that 

the peptide is oriented parallel to the bilayer in macroscopically unoriented lipid vesicles 

as had been proposed from the topology experiments in chapter 4. 

    The orientation and topology of the isolated S4 helix of the KvAP voltage 

sensor was determined in chapter 7. The α-helix was found to be oriented with a tilt angle 

of 40°. Membrane thinning of ~9Å was also observed, which would allow the charged 

arginine sidechains distributed throughout the helix to reach the lipid/water interface. In 

chapter 8 the dynamics of inter-bilayer water and lipids are explored by a 1H-31P 

correlation experiment. It was found that the major magnetization transfer mechanism 

from water to lipid is chemical exchange as opposed to dipolar mediated diffusion, which 

manifests itself as water to lipid cross peaks appearing only in lipids containing labile 

protons. Addition of peptide to the lipids shortens the water 1H T2 significantly.  This was 

attributed to peptide molecular motion that is slower than the lipids coupled with 

intermolecular hydrogen bonding between lipid and peptide and the presence of 

additional exchangeable protons on the peptide. In chapter 9 the low order parameter of 

lipids combined with the fast uniaxial motion of lipids and peptides in the lipid bilayer 

are shown to allow direct detection of heteronuclear spectra with very low power 1H 

decoupling under moderate speed MAS. Allowing low power decoupling under moderate 

MAS is important because membrane samples are dilute spin systems which require large 

volume rotors which cannot be spun fast. Low power decoupling is also attractive to 

avoid radiofrequency heating and sample degradation in these ionically conductive 

samples.  

 

Copyright Permission 

Chapters 3, 4, 5, 6, 8 and 9 are reprints of published papers. Permissions have been 

obtained from the following publishing groups: 

Chapter 3, 6, 8 and 9 Elsevier Inc. 
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Chapter 2 

NMR Methodology 

 

Alpha-helical peptide orientation by 2D dipolar-chemical shift correlation NMR 

Pulse sequence 

2D separate-local-field (1) experiments correlating 15N chemical shift to 1H-15N dipolar 

coupling to determine peptide orientation (2, 3) in oriented lipid bicelle samples were 

carried out using the sequence shown in Figure 2.1. After 1H-15N CP, the 15N 

magnetization is allowed to evolve under 1H-15N dipolar coupling with FSLG 

homonuclear 1H decoupling (4) during t1. Then the 15N chemical shift is refocused and 

the 15N signal is detected. During detection 13C is decoupled to remove 13C-15N dipolar 

coupling in uniformly labeled residues (5). 

 

 

 

Figure 2.1. Static 2D SLF experiment used to correlate 15N chemical shift with 1H-15N dipolar 

coupling in uniformly labeled 13C and 15N residues. 

 

Simulation 

The experimental 2D separate-local-field spectra (2, 3, 6), which correlate 1H-15N dipolar 

coupling with 15N anisotropic chemical shift, need to be fit by simulation in order to 

determine the α-helix orientation. Simulated curves were made by a Fortran program. 

This program first defines a coordinate system that is fixed on the peptide molecule, then 

calculates the orientation dependent frequencies of the labeled sites as the magnetic field 

is rotated about this molecular frame. For an alpha-helix the molecular frame is defined 

as shown in Figure 2.2. First the z-axis of the molecular frame is defined at being the 
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helix axis, which is calculated by taking the average of all N-H bond orientations in the 

helix. Next, the y-axis is made to be along the Ni-C’ i-1 bond of one of the peptide planes 

in the peptide and orthogonal to the z axis and the membrane normal n. Finally the x axis 

is made to be orthogonal to the z and y axes. The angles τ and ρ are used to relate the α-

helix to the bilayer normal. τ is the angle between the helix axis and the membrane 

normal, while ρ is the azimuthal angle between the y axis of the peptide PAS and the 

projection of the membrane normal into the x-y plane of the molecular PAS as can be 

seen in figure 2.2(b). 

 

 

Figure 2.2. Schematic representation of the values τ and ρ and their relation to a membrane 

inserted α-helix (a). Definition of τ and ρ values and how they relate to the molecular frame of an 

α-helical peptide (b). τ is the angle between n and z, ρ is the azimuthal angle between y and the 

projection of n into the x-y plane. 

 

The Fortran program uses the structure coordinates from a PDB file of the protein helix 

as input. For the KvAP S4 helix, an ideal α-helix with phi=-64.1° and psi=-40° was 

generated in the molecular modeling software InsightII and used as the base structure. 

The 15N anisotropic chemical shifts and 1H-15N dipolar couplings, which depend on the 

orientation with respect to B0, are calculated for different B0 orientations as τ and ρ are 

varied systematically. 
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For unflipped bicelle samples B0 and n are related by 90°. Fast rotation of the 

bicelle around the bilayer normal at 90° to B0 was taken into account by scaling both the 

chemical shift and the dipolar coupling values outputted by the Fortran simulation by -0.5 

(7). Further scaling of both the dipolar and chemical shift frequencies comes from the 

order parameter of the bicelle which arises from bicelle wobble. It has been shown (7-9) 

that bicelles made up of DMPC/DHPC lipids have enough motion to give an order 

parameter of 0.75-0.85. For the bicelle samples measured here, Sbicelle was a free fit 

parameter and was found to be 0.8. Equation 2.2 (8) should be used to scale the chemical 

shift and dipolar frequencies to make sure that the non-zero isotropic chemical shift is 

accounted for, 
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1   [2.1] 

where νbicelle is the anisotropic frequencies expected in an unflipped bicelle, νbilayer is the 

anisotropic frequencies expected in the bilayer and νiso is the isotropic shift which is zero 

for the dipolar interaction. One further scaling factor needs to be considered for this 

experiment where FSLG 1H-1H dipolar decoupling was applied during t1. Since FSLG 

scales heteronuclear dipolar coupling the 15N-1H dipolar dimension needs to be further 

scaled by either the theoretical value of 0.577 or by a scaling factor measured on a rigid 

model compound. 

 After τ and ρ have been determined by fitting the experimental spectrum with 

simulated data, the result needs to be visualized. In order to do this, a molecular principal 

axis system (PAS) similar to the one in Figure 2.2 was created in InsightII with B0 in the 

required orientation. The PAS was then placed on the ideal helix and arranged so that the 

N4-C’3 bond was collinear with the y-axis of the PAS. Once this was done, B0 

represented the bilayer normal. The Fortran code used for simulating the PISA wheels is 

included in appendix 4. 
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2D 13C detected 1H spin diffusion 

Pulse sequence 

Determining the depth of membrane protein insertion in the lipid bilayer is an important 

part of understanding the peptide-lipid interactions. One useful solid-state NMR 

experiment for determining the membrane insertion topology is the liquid-crystalline-

phase 2D 13C-detected 1H spin diffusion experiment (10-12), which is shown in Figure 

2.3. First any 13C magnetization from previous scans is destroyed by 4 consecutive 90° 

pulses. Following that, proton magnetization is created in the x-y plane and a 0.5-2.0 ms 
1H T2 filter destroys 1H magnetization from any short T2 components of the sample. In 

peptide containing lipid vesicles in the liquid-crystalline phase, this T2 filter will remove 

any magnetization from the rigid peptide while the 1H magnetization from the mobile 

lipids and water will remain. The remaining 1H chemical shifts are encoded to make the 

experiment a 2D and give resolution between 1H sources, then the proton magnetization 

is moved to z by a 90° pulse. Spin diffusion from magnetization source to magnetization 

sink occurs during tmix which is varied from a few milliseconds up to a second. 

Subsequently, there is a 1H-13C CP and detection. It is important to remember that all 

mechanisms of magnetization transfer during t1 will lead to cross peaks, including 

chemical exchange.  

 

 

Figure 2.3. 2D 13C detected 1H spin diffusion experiment pulse sequence. 

 

Data analysis 

To correctly plot 2D spin diffusion build-up curves, several factors need to be accounted 

for. The required scaling is summarized in equation 2.2. First, differences in the number 

of scans and the cross polarization efficiency need to be accounted for. Further scaling is 
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required for 1H T1 relaxation during the mixing time, which is significant for the mixing 

times used in experiments when the lipid is in the liquid crystalline phase. The second to 

last term normalizes the data so that the build up curve has a maximum intensity of one. 

The final term in equation 2.2 allows the build up curve of CH2 to be plotted on the same 

scale as the water curve. This scaling factor is needed because of the large difference 

between the number of CH2 and water spins and hence the signal due to lipid CH2 and 

water in the 1H direct polarization spectra. 
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Error propagation for each build-up curve point should be treated by equation 2.3, where 

the signal to noise (sino on Bruker spectrometers) values are taken from the 13C cross 

section. Since spin diffusion in the peptide is assumed to be very fast (i.e. there is no site 

resolution), the error for each time point can be obtained by adding 13C slices from 

different sites. 
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Simulation 

Desired information from the spin diffusion experiment is the minimal distance between 

the peptide and the lipid chains and also the distance from peptide to water. The spin 

diffusion experiment utilizes diffusion of proton magnetization which is mediated by 1H-
1H dipolar coupling. Below, together with Figure 2.4, is an example to visualize the 

experiment using lipid CH2 as the source. Proton magnetization starts at the source, 1H of 

the lipid chains, then dipolar coupling driven spin diffusion during tmix pushes the 

magnetization outward in each direction. Some of the original magnetization reaches 

protons on the sink, which is the peptide, and this magnetization is transferred to 13C and 

detected. Based on this, transmembrane peptides will have fast CH2 build-up curves due 



www.manaraa.com

 

 

17

to their proximity to the lipid chains. Surface bound peptides have a much slower CH2 

build-up curve because they are far removed from the interior of the membrane. 

 

Figure 2.4. Schematic representation of the spin diffusion experiment. Transmembrane peptides 

(a) show fast CH2-peptide build up curve because of close lipid chain to peptide contact. Surface 

bound or interfacial peptides (b) have slow CH2-peptide build up curves since the magnetization 

needs to diffuse over a long distance. Simulation grid with plane spacing a, and representation of 

how magnetization diffuses through each plane (c). 

 

Simulation of the build up curves (10, 13) is based on a one-dimensional lattice model, 

where a plane (Mi) exchanges magnetization with surrounding planes by equation 2.4.  

 1i1ii
i MMM2

t

M
−+ Ω+Ω+Ω−=

∆
∆

  [2.4] 

Where Ω=D/a2 and a is the distance between planes, set to be 2 Å, and D is the diffusion 

coefficient which has units of nm2/ms and varies depending on the environment the spin 

diffusion is taking place in. The diffusion rate depends on the environment because areas 

of different dynamics have different 1H-1H dipolar coupling strengths which will slow 

down or speed up spin diffusion since this is a dipolar driven process. In peptide 

containing lipid bilayer samples, there are five distinct regions that the 1H magnetization 

diffuses through on its way from the source (water or lipid CH2) to the sink (peptide). 

These different regions include the water source, the lipid bilayer source, the gap between 

source and sink, the interface between the gap and the sink and the sink itself. These 

different regions have different lengths and diffusion coefficients. Estimates for the 

values used for the lengths (L) and diffusion coefficients (D) can be made based on 

literature values. Estimates for the needed coefficients and lengths have been argued 

quite closely before (10) with commonly used values shown in Table 2.1.  
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Table 2.1. Commonly used input parameters for the spin diffusion build-up curve simulation 

program. Factors that affect the curve the most are Dinterface and Lgap. 

 D (nm2/ms) L (nm) 
Source (lipid CH2) 0.012 0.4 

Source (H2O) 0.03 0.2 
Gap (source to sink) 0.012 X 

Interface (gap to sink) 0.00125 (varied) 0.2 
Sink (peptide) 0.3 3 

  

The geometry and size of the sink are not critical because spin diffusion in the rigid 

peptide is much faster than in the other regions. This means that once proton 

magnetization reaches the peptide, it equilibrates across the entire protein removing site 

resolution of the build up curve as well as dependence on the 3D structure of the protein. 

The unknown value that is being simulated for is LGap, but DInterface is difficult to estimate 

and this factor changes the simulated build up curve considerably. Conveniently, 

adjusting LGap has very different effects on the spin diffusion curve than changing 

DInterface (Figure 2.5).  

 

 

Figure 2.5. Changing DInterface, which is difficult to estimate, affects the slope of the build up 

curves (a). Changing LGap changes the time when the build up curve becomes non-zero (b). Even 

though these two values are treated as unknowns, the curve can be fit because these two variables 

have such a different effect (11).  
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The point where the build up curve moves from the zero on the y-axis changes as LGap is 

varied, while different DInterface values affect the slope of the curve which allows these 

two values to be adjusted independently. The Fortran simulation program code is 

included in appendix D. 

 

References 

1. Schmidt-Rohr, K., and Spiess, H. W. (1994) Multidimensional Solid-State NMR 

and Polymers, Academic Press, San Diego. 

2. Marassi, F. M., and Opella, S. J. (2000) Journal of magnetic resonance 144, 150-

155. 

3. Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, Z., Nishimura, 

K., Gan, Z., Fu, R., Quine, J. R., and Cross, T. A. (2000) Journal of Magnetic 

Resonance 144, 162-167. 

4. Bielecki, A., Kolbert, A. C., de Groot, H. J. M., Griffin, R. G., and Levitt, M. H. 

(1990) Advances in Magnetic Resonance 14, 111-150. 

5. Sinha, N., Grant, C. V., Park, S. H., Brown, J. M., and Opella, S. J. (2007) 

Journal of Magnetic Resonance 186, 51-64. 

6. Kim, S., and Cross, T. A. (2004) Journal of Magnetic Resonance 168, 187-193. 

7. Marcotte, I., and Auger, M. (2005) Concepts in Magnetic Resonance Part A 24A, 

17-37. 

8. Park, S., DeAngelis, A., Nevzorov, A., Wu, C., and Opella, S. (2006) Biophysical 

Journal 91, 3032-3042. 

9. DeAngelis, A., Howell, S., Nevzorov, A., and Opella, S. (2006) Journal of the 

American Chemical Society 128, 12256-12267. 

10. Huster, D., Yao, X., and Hong, M. (2002) Journal of the American Chemical 

Society 124, 874-883. 

11. Mani, R., Cady, S., Tang, M., Waring, A. J., Lehrer, R. I., and Hong, M. (2006) 

Proceedings of the National Academy of Sciences 103, 16242-16247. 

12. Ader, C., Schneider, R., Seidel, K., Etzkorn, M., Becker, S., and Baldus, M. 

(2009) Journal of the American Chemical Society 131, 170-176. 



www.manaraa.com

 

 

20

13. Kumashiro, K. K., Schmidt-Rohr, K., Murphy, O. J., Ouellette, K. L., Cramer, W. 

A., and Thompson, L. K. (1998) Journal of the American Chemical Society 120, 

5043-5051. 

 

 



www.manaraa.com

 

 

21

Chapter 3 

Peptide-Lipid Interactions of the ββββ-Hairpin Antimicrobial Peptide 

Tachyplesin and its Linear Derivatives from Solid-State NMR 

Published in Biochim. Biophys. Acta 

2006, 1758, 1285-1291 

Tim Doherty, Alan J. Waring, and Mei Hong 

 

Abstract  

 The peptide-lipid interaction of a β-hairpin antimicrobial peptide tachyplesin-1 

(TP-1) and its linear derivatives are investigated to gain insight into the mechanism of 

antimicrobial activity. 31P and 2H NMR spectra of uniaxially aligned lipid bilayers of 

varying compositions and peptide concentrations are measured to determine the peptide-

induced orientational disorder and the selectivity of membrane disruption by tachyplesin. 

The disulfide-linked TP-1 does not cause any disorder to the neutral POPC and 

POPC/cholesterol membranes but induces both micellization and random orientation 

distribution to the anionic POPE/POPG membranes above a peptide concentration of 2%. 

In comparison, the anionic POPC/POPG bilayer is completely unaffected by TP-1 

binding, suggesting that TP-1 induces negative curvature strain to the membrane as a 

mechanism of its action. Removal of the disulfide bonds by substitution of Cys residues 

with Tyr and Ala abolishes the micellization of POPE/POPG bilayers but retains the 

orientation randomization of both POPC/POPG and POPE/POPG bilayers. Thus, linear 

tachyplesin derivatives have membrane disruptive abilities but use different mechanisms 

from the wild-type peptide. The different lipid-peptide interactions between TP-1 and 

other β-hairpin antimicrobial peptides are discussed in terms of their molecular structure.  

 

Introduction 

 One of the approaches for understanding the structure-activity relationship of 

membrane destructive antimicrobial peptides is to investigate the molecular interaction 

between the peptide and the lipids using solid-state NMR spectroscopy. The peptide-lipid 

interaction can be examined as a function of both the amino acid sequence and the 
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membrane composition, to address questions such as the importance of structural 

amphiphilicity and charge distribution to membrane disruption, and how membrane 

components such as cholesterol and anionic lipids modulate the peptide-lipid interaction. 
31P and 2H NMR are ideal probes for the peptide-lipid interactions. The 31P chemical shift 

tensor interaction is exquisitely sensitive to the lipid headgroup conformation, lipid 

phase, and electrostatic perturbation to the membrane surface (1). 2H quadrupolar 

couplings complement 31P NMR by providing information on the lipid chain dynamics 

and thus the fluidity of the hydrophobic part of the membrane. These experiments are 

best conducted on uniaxially aligned membranes to resolve the signals of non-bilayer 

lipids that are often induced by the peptides (2, 3). A number of antimicrobial peptides 

have been investigated using this uniaxial alignment NMR approach (4-9).  

 One class of antimicrobial peptides is characterized by disulfide-stabilized β-sheet 

conformation, of which protegrin-1 (PG-1) and tachyplesin-1 (TP-1) are two well-studied 

examples. Both exhibit potent and broad-spectrum activities against Gram-positive and 

Gram-negative bacteria, fungi, and some viruses (10, 11). Both peptides contain two 

cross-strand disulfide bonds and six cationic residues. However, the distribution of the 

charged residues differs: PG-1 has the Arg residues located at the two long ends of the β-

hairpin, leaving the central part of the molecule hydrophobic, while TP-1 has the Arg 

residues distributed throughout the sequence (Figure 3.1). 1H solution NMR studies 

confirmed that both peptides adopt a well-defined β-hairpin structure in aqueous solution 

(12, 13). However, when bound to DPC micelles, the TP-1 β-hairpin is reported to 

undergo a significant conformational rearrangement and bends around the middle of the 

two strands, incurring a significant curvature (14).  

 In addition to wild-type PG-1 and TP-1, derivatives of both peptides have been 

examined to gain insight into the sequence determinants of antimicrobial activity. We 

studied the peptide-lipid interactions of two PG-1 mutants: in one mutant the disulfide 

bonds are removed by Cys –> Ala mutation, while in the other mutant the number of 

cationic residues is reduced from six to three (15). 31P NMR spectra showed that the Ala 

mutant nearly completely lost its membrane-disruptive ability while the charge-reduced 

mutant caused significant membrane perturbation (15). These are consistent with the 
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activities of the peptides (16). Moreover, 1H solution NMR spectra indicate that the Ala 

mutant is a random coil in solution while the charge-reduced PG-1 mutant maintains a β-

hairpin fold. For TP-1, Cys->Ala mutation (TPA4) similarly caused the peptide to 

become a random coil in solution based on circular dichroism experiments, while Cys-

>Tyr substitution (TPY4) retained the β-hairpin fold through π−π stacking interactions 

based on 1H NMR spectra (14). Again, these solution conformations correlate well with 

the antimicrobial activities: TPA4 is inactive while TPY4 has strong antibacterial and 

antifungal activities (17).  
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Figure 3.1. Amino acid sequence of (a) TP-1, (b) TPY4, (c) TPA4, and (d) PG-1. 

 

 In this study, we use 31P and 2H solid-state NMR to investigate the interactions of 

TP-1 and its Ala and Tyr derivatives with lipid bilayers of varying compositions. We 

assess the membrane-disruptive abilities of these peptides through non-bilayer intensities 

and unoriented powder intensities in the spectra of uniaxially aligned lipids. Interestingly, 

the tachyplesin peptides show several important differences from the protegrins in their 
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membrane-interaction profiles, and the linear derivatives of TP-1 cause comparable or 

stronger membrane perturbation compared to wild-type TP-1. The implications of these 

differences will be discussed.  

 

Materials and Methods 

Preparation of uniaxially aligned membranes  

 All lipids were purchased from Avanti Polar Lipids (Alabaster, AL) and used 

without further purification.  TP-1, TPA4, and TPY4 were synthesized using Fmoc solid-

phase peptide synthesis protocols. The amino acid sequences of the three tachyplesins are 

shown in Figure 3.1 and compared to the sequence of PG-1.  

 Glass-plate orientated membranes were prepared using a naphthalene-

incorporated procedure (18). The peptide was dissolved in TFE and mixed with a 

chloroform solution of the desired amount of lipids. The mixture was dried under a 

stream of N2 gas and the dried film was redissolved in a 2:1 mixture of chloroform/TFE 

containing a three-fold excess of naphthalene with respect to the lipids.  The solution was 

deposited on glass plates (Marienfeld Laboratory Glassware) of ~80 µm thickness and 6 

x 12 mm2 size at a density of ~0.01 mg/mm2.  The sample was air dried for 2 hours and 

then vacuum dried overnight to remove all the solvents and naphthalene.  The dried 

membranes were hydrated first by direct deposition of ~1 µL water per plate, and then 

through vapor diffusion at 98% relative humidity over a saturated solution of K2SO4 for 

3-5 days at room temperature. Subsequently, the glass plates were stacked, wrapped in 

parafilm and sealed in a polyethylene bag to prevent dehydration.  To ensure 

reproducibility, all membrane series as a function of peptide concentration were repeated 

multiple times. Peptide-lipid molar ratios of 0, 1:100, 1:50, and 1:25 were used and were 

denoted as concentrations of 0, 1%, 2%, and 4%, respectively.  

 

Solid-state NMR experiments 

 NMR experiments were conducted on a Bruker DSX-400 spectrometer operating 

at a resonance frequency of 162.12 MHz for 31P and 400.49 MHz for 1H. 31P spectra of 

oriented peptide-lipid mixtures were collected using a double-resonance probe equipped 
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with a custom-designed radio-frequency coil with a rectangular cross section and a 

dimension of 12 x 6 x 5 mm (L x W x H). The samples were inserted into the magnet 

with the alignment axis parallel to the external magnetic field B0. The 31P chemical shift 

was referenced externally to 85% phosphoric acid at 0 ppm. A typical 31P 90º pulse 

length of 5 µs, a 1H decoupling field strength of 50 kHz, and a recycle delay of 2 s were 

used. Experiments on oriented membranes were conducted between 291 K and 300 K, 

above the phase transition temperatures of the POPC and POPG lipids (271 K) and the 

estimated phase transition temperature of the POPE/POPG membrane (291 K). 2H spectra 

of the POPE/d31-POPG membrane were collected at 300 K using a standard quadrupolar 

echo sequence. Magic-angle spinning (MAS) experiments on POPE/POPG membrane 

samples were carried out on a triple-resonance MAS probe with a 4-mm spinning 

module.  

 

Results 

Lipid-peptide interaction of wild-type TP-1 

 We first examine the interaction of wild-type TP-1 with zwitterionic 

phosphatidylcholine (PC) membranes. Figure 3.2 shows representative 31P spectra of 

uniaxially aligned POPC and POPC/cholesterol bilayers containing 0 – 4% TP-1. If no 

orientational disorder is present, a single peak at ~30 ppm, corresponding to the 0˚ edge 

of the 31P chemical shift anisotropy (CSA) powder pattern, is expected due to the parallel 

orientation of the bilayer normal with respect to B0. Any peptide-induced membrane 

disorder is manifested as intensities away from this 0˚ frequency. Figure 3.2 shows that 

TP-1 creates minimal disorder in either neutral membranes even at the highest peptide 

concentration used, as little intensity is observed away from the 0˚ peak. While other 

antimicrobial peptides such as RTD-1 and PG-1 can also preserve the orientational order 

of cholesterol-containing phosphatidylcholine membranes (6, 19), the complete retention 

of the orientational order of pure POPC bilayers by TP-1 is more unexpected: for 

example, PG-1 completely disrupts the POPC bilayer structure above a concentration of 

3%. TP-1 also causes a small reduction of the 31P chemical shift anisotropy in 

POPC/cholesterol membranes, as shown by an upfield shift of the 0˚ frequency peak with 
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increasing concentrations of the peptide. Since the spectral linewidth is little affected by 

the peptide, this suggests a small conformational change of the lipid headgroup upon TP-

1 binding. 

40 -2020 0 ppm -2040 20 0 ppm

0%

4%

2%

1%

(a) (b)

31P 31P  
Figure 3.2. 31P spectra of uniaxially aligned (a) POPC and (b) POPC:cholesterol (3:1) bilayers in 

the presence of TP-1. Peptide concentrations are 0, 1%, 2%, and 4%. Dashed lines guide the eye 

for the 0˚ frequency peaks. 
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Figure 3.3. 31P spectra of uniaxially aligned (a) POPE : POPG (3:1) and (b) POPC : POPG (3:1) 

bilayers in the presence of TP-1. Peptide concentrations are 0, 1%, 2%, and 4%. The 

POPE/POPG spectrum with 4% TP-1 is best fit with a combination of a residual oriented peak 

(27%), an isotropic peak (18%), and a uniaxial powder lineshape (55%). The individual 

components are shown in dashed lines. 

  

While neutral and cholesterol-containing bilayers mimic the composition of 

mammalian cell membranes, bacterial membranes contain significant amounts of anionic 

lipids, which better attract the cationic antimicrobial peptides (20). Thus we investigated 

the interaction of TP-1 with two anionic bilayers, POPE/POPG (3 : 1) and POPC/POPG 

(3 : 1), where the only difference is the headgroup size of the zwitterionic lipid 

component. Figures 3.3 shows representative 31P spectra of these two membranes with 

varying concentrations of TP-1. A dramatic difference is observed: the addition of TP-1 

had almost no effect on the structure of the POPC/POPG bilayers (Figure 3.3b), but 

creates a significant 90˚ peak at -12 ppm and an isotropic peak near 0 ppm in the 
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POPE/POPG spectra (Figure 3.3a). The 90˚ peak and the broad low intensities in the 

entire CSA range indicate that a significant fraction of the lamellar bilayers has become 

randomly oriented instead of uniaxially aligned as a result of TP-1 binding. The isotropic 

peak, on the other hand, indicates the formation of non-bilayer micelles or small vesicles. 

The broadness of the isotropic peak indicates that these vesicles are not so small as to 

undergo fast isotropic tumbling on timescales shorter than the inverse of the 31P chemical 

shift anisotropy. Spectral simulation for the 4% peptide bound POPE/POPG sample gives 

the percentages of the three lipid components: the residual oriented bilayers with a 

mosaic spread of 35˚ (27%); the isotropic vesicles (18%), and the randomly oriented 

bilayers (55%). The fact that these disorders are conspicuously absent in the 

POPC/POPG spectra indicates that TP-1 action is extremely sensitive to the curvature of 

the lipid bilayer: membrane disruption is strongly facilitated by the negative curvature of 

POPE-containing bilayer, while the larger POPC headgroup counters this effect, thus 

maintaining the bilayer order in the presence of the peptide. 

 To determine the dynamics of the hydrophobic part of the POPE/POPG 

membrane at high concentrations of TP-1, we incorporated sn-1 chain perdeuterated d31-

POPG lipids into the mixture and measured its 2H spectra in the absence and presence of 

TP-1. Figure 3.4 compares the resulting spectra. The control sample shows well resolved 

splittings corresponding to the different motional order parameters along the acyl chain: 

the more rigid groups near the glycerol backbone give rise to larger quadrupolar splittings 

while the more mobile groups near the chain termini produce smaller splittings. The 

maximum splitting is 64 kHz, corresponding to a C-2H order parameter of 0.26. The 

addition of TP-1 significantly broadened the spectra to the point where the splittings are 

no longer resolved; however, the coupling strengths remain unaffected, as seen, for 

example, in the maximum splitting (Figure 3.4). Thus, TP-1 binding does not cause 

lateral expansion of the bilayer, which would reduce the acyl-chain order parameters. The 
2H spectrum also has a zero-frequency peak, consistent with the isotropic peak in the 31P 

spectrum (Figure 3.3a) that is attributed to small vesicle formation. 
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Figure 3.4 2H spectra of anionic POPE : d31-POPG (3:1) bilayers (a) without TP-1 and (b) with 

4% TP-1. Dashed lines guide the eye for the largest quadrupolar splitting.  

 

 To identify whether the cationic TP-1 selectively binds to the anionic POPG lipids 

to create the isotropic vesicles, we measured the 31P MAS spectra of the mixture in the 

absence and presence of TP-1 (Figure 3.5). If the peptide selectively disrupts POPG 

lipids but not POPE lipids, then preferential broadening or chemical shift changes of the 

POPG signal but not the POPE peak would be expected. In the absence of TP-1, the 

POPE and POPG 31P chemical shifts are resolved by 0.5 ppm (with full width at half 

maximum of 0.25 ppm) in the MAS spectrum (Figure 3.5a). Simulation of the MAS 

sideband intensities and comparison with the static powder lineshapes of the mixed 

membrane (Figure 3.5c) and of the individual lipids (spectra not shown) yield a 31P 

chemical shift anisotropy parameter, δ ≡ δzz − δiso, of 25.3 ppm for POPG and 28.6 ppm 

for POPE. Upon TP-1 binding, the two peaks in the MAS spectrum broaden to a 

combined linewidth of 1.2 ppm and become unresolved, while the sideband intensity 

distribution remains unaffected (Figure 3.5b). Since POPG accounts for only 25% of the 

lipid in the sample, if it is the only component broadened by TP-1, we would expect a 
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noticeably narrower and higher peak for the major lipid component (POPE) that is 

resolvable from the POPG signal. Instead, both the linewidth and the chemical shift 

anisotropy indicate that there is no detectable preferential binding of TP-1 to POPG, 

suggesting that the two lipids are well mixed on the nanometer scale and both are 

disordered by the peptide. The static 31P spectrum of the peptide-bound POPE/POPG 

bilayer exhibits a uniaxial powder lineshape superimposed with an isotropic peak at 

~10% of the total intensity (Figure 3.5d), consistent with the oriented-membrane result. 
31P Hahn-echo experiments showed that the TP-1-bound POPE/POPG membrane has a 

much shorter 31P spin-spin relaxation time (T2) of 2.3 ms compared to the non-peptide-

containing POPE lipids, which has a T2 of 17 ms (Figure 3.5e). These indicate that the 

line broadening seen in the 31P MAS spectrum is homogeneous in origin, caused by lipid 

motions on the time scale of the inverse of the 31P chemical shift anisotropy, ~200 µs.  

 

Lipid-peptide interaction of TPY4 and TPA4 

To understand the role of the disulfide bonds in tachyplesin-membrane 

interaction, we studied two TP-1 mutants where the Cys residues are replaced by Tyr and 

Ala. Figure 3.6 shows the 31P spectra of uniaxially aligned POPE/POPG membranes after 

TPY4 and TPA4 binding and compare these with TP-1. Both mutants lack the isotropic 

peak of TP-1, but retain the broad intensity distribution that is indicative of unoriented 

bilayers. Thus, TPY4 and TPA4 randomize the membrane orientations but do not 

micellize the POPE/POPG bilayers. The intensity difference between TPY4 and TPA4 at 

the 90˚ frequency (-12 ppm) is within experimental uncertainty, indicating that the 

membrane disruptive abilities of the two mutants are similar. Remarkably, unlike TP-1, 

TPY4 and TPA4 are also highly effective in disrupting the POPC/POPG bilayer: the 31P 

spectra (Figure 3.7) show significant powder intensities similar to those of POPE/POPG 

bilayers. Thus, TPY4 and TPA4 are more potent in disrupting the POPC/POPG bilayers 

than the wild-type TP-1, and have little selectivity between POPC/POPG bilayers and 

POPE/POPG bilayers.  
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Figure 3.5. 31P MAS spectra of unoriented POPE : POPG (3:1) membrane in the absence (a) and 

presence (b) of 4% TP-1. The corresponding static spectra are shown in (c, d). In (d), the TP-1-

bound POPE/POPG 31P spectrum is best fit (dashed line) by a combination of 10% of an isotropic 

peak and 90% of a uniaxial powder lineshape. (e) 31P Hahn echo intensities as a function of echo 

delay time for POPE/POPG lipids with 4% TP-1 (filled squares) and for POPE lipids without TP-

1 (open squares). The decay constant, T2, is much shorter for the peptide-bound membrane (2.3 

ms) than for the pure lipid (17 ms).  
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Discussion 

 The 31P NMR spectra reveal several surprising aspects of tachyplesin-lipid 

interactions that differ from the analogous β-hairpin peptides PG-1 and RTD-1. First, 

wild-type TP-1 is extremely selective in its membrane perturbation. Among the four lipid 

compositions examined, POPC, POPC/cholesterol, POPC/POPG, and POPE/POPG, only 

the POPE/POPG bilayers are disrupted by TP-1 while the other membranes retain their 

orientational order. The TP-1-induced POPE/POPG membrane disorder includes 

randomization of the bilayer orientation and the formation of micelles or small vesicles 

that undergo isotropic tumbling on the intermediate time scale. The latter is likely the 

main cause of the significantly shorter 31P T2 relaxation time upon TP-1 binding. Based 

on the broadening of both the POPE and POPG peaks in the 31P MAS spectra, it appears 

that TP-1 does not exclusively target the anionic POPG lipids and the two lipids are well 

mixed on the nanometer scale in the membrane.  

-2040 0 ppm20
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(b)
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31P31P 31P  

Figure 3.6. 31P spectra of uniaxially aligned POPE : POPG (3:1) bilayers in the presence of TP-1 

and its linear derivatives. (a) TP-1. (b) TPY4. (c) TPA4. Peptide concentrations are 0, 1%, 2%, 

and 4%. 
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Since the zwitterionic lipid of bacterial membranes is almost exclusively 

phosphatidylethanolamine (PE) rather than PC (20), the selective disruption of 

POPE/POPG membrane by TP-1 is consistent with the peptide’s activity profile (11). The 

observed micellization of POPE/POPG bilayers is consistent with negative-stain electron 

microscopy of TP-1 bound to phosphatidylglycerol (PG) lipids and light scattering results 

on PG bilayers and mixed PE/PG bilayers containing high concentrations (4-20%) of TP-

1 (21, 22).  

The membrane interaction profile of TP-1 differs markedly from that of PG-1 and 

RTD-1, two other disulfide-linked β-sheet antimicrobial peptides. PG-1 and RTD-1 show 

strong perturbation of both PC/PG and PE/PG membranes (6, 15). Moreover, PG-1 

micellizes PC/PG bilayers but not PE/PG bilayers (15), in contrast to the TP-1 behavior. 

Given the smaller headgroup of PE compared to PC, this suggests that PG-1 disrupts lipid 

bilayers through positive curvature strain while TP-1 induces negative curvature strain. 

The exact molecular mechanism for the opposite curvature strains of the two peptides is 

not yet known. One possibility is that the membrane-bound TP-1 adopts a conformation 

that favors negative curvature strain. 1H solution NMR spectra of TP-1 in DPC micelles 

indicate that the peptide undergoes a significant conformational rearrangement from the 

aqueous structure: the backbone of the two strands bends around Arg5 and Arg14, thus 

increasing the hydrophobic accessible surface area (14). If this conformational change 

persists in the bilayer, then it may increase the peptide volume in the hydrophobic region 

of the bilayer than at the lipid-water interface, thus creating negative curvature strain. 

This hypothesis may be tested by measuring key distance constraints in TP-1 when bound 

to the lipid bilayer and by measuring the depth of insertion of TP-1. Alternatively, the 

different curvature behaviors of TP-1 and PG-1 may result from the different charge 

distributions of the two peptides. The cationic residues of TP-1 are located at the N- and 

C-termini and in the middle of the β-strands, while the Arg residues of PG-1 are clustered 

to the β-turn at one end of the molecule and the two termini at the other end (Figure 3.1). 

Since we have previously determined that PG-1 is inserted into the lipid bilayer with the 

β-turn near the membrane surface (23, 24), electrostatic repulsion among the three β-turn 
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Arg residues should expand the bilayer surface, inducing positive curvature strain. 

Without such a cationic β-turn, and with three Arg residues located in the middle of the 

two strands, TP-1 is likely to expand the hydrophobic part of the membrane instead, thus 

creating a negative curvature strain.  

The second surprising result of this study is the similar membrane disruptive 

ability of TPY4 and TPA4 towards the two anionic bilayers and the stronger perturbation 

of PC/PG bilayers by the mutants than by the wild-type TP-1 (Figures 3.6-3.7). 

Antimicrobial assays of tachyplesin derivatives showed that TPY4 is similarly effective 

at inhibiting bacterial and fungal growths as TP-1 while TPA4 is inactive (17). Thus one 

would expect less membrane disorder by TPA4 than by TPY4. The fact that TPY4 and 

TPA4 cause similar membrane disorder in the two anionic bilayers indicates that 

membrane disruption is not strongly correlated with antimicrobial activity for the 

tachyplesin peptides. This complexity has also been noted in previous studies of 

tachyplesins. For example, measurements of carboxyfluorescein leakage from acidic 

PC/PA liposomes indicate that the inactive TPA4 causes similar membrane 

permeabilization as the active TPY4 and TP-1 (17). FTIR measurements of TP-Acm, 

where the SH groups of Cys residues were protected with acetamidomethyl groups, 

showed that TP-Acm creates larger acyl-chain disorder than TP-1 in PG lipids despite 

having much weaker membrane permeabilization and micellization abilities than TP-1 

(21). Based on these observations, Matsuzaki and coworkers suggested that tachyplesin 

peptides interact with lipid membranes with multiple mechanisms: the disulfide-linked 

TP-1 permeabilizes acidic bilayers at low peptide-lipid molar ratios without causing 

membrane disorder and achieves this by forming anion-selective pores followed by 

translocation (22). In contrast, the linear TP-Acm does not permeabilize acidic 

membranes except at very high concentrations but disrupts the bilayer organization. Our 
31P NMR spectra indicate that TPA4 resembles TP-Acm in being membrane destabilizing 

without having strong antimicrobial activities while TPY4 possesses both membrane 

perturbing and antimicrobial activities. These observations imply that membrane 

permeabilization, which requires pore formation, is a more direct indicator of 

antimicrobial activity than membrane perturbation for the tachyplesin peptides.  
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In summary, 31P and 2H NMR spectra of uniaxially aligned membranes of varying 

compositions indicate that TP-1 selectively micellizes and randomizes POPE/POPG 

bilayers but retains the orientational order of neutral and POPC/POPG bilayers. This 

suggests that TP-1 induces negative curvature strain to the bilayer, which may result from 

its weaker conformational amphipathicity compared to PG-1. The removal of disulfide 

bonds in TP-1 abolishes the micellization ability but retains the random orientation 

distribution of PE/PG and PC/PG anionic bilayers, indicating that the linear tachyplesin 

derivatives perturb the lipid bilayer organization with a different mechanism from the 

disulfide-linked TP-1. Therefore, care must be taken in correlating the membrane-

perturbing abilities of tachyplesin peptides with their antimicrobial activities.  
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Figure 3.7. 31P spectra of uniaxially aligned POPC : POPG (3:1) bilayers in the presence of TP-1 

and its linear derivatives. (a) TP-1. (b) TPY4. (c) TPA4. Peptide concentrations are 0, 1%, 2%, 

and 4%. 
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Abstract  

 The conformation and membrane topology of the disulfide-stabilized 

antimicrobial peptide, tachyplesin I (TP), in lipid bilayers are determined by solid-state 

NMR spectroscopy. The backbone (φ, ψ) torsion angles of Val6 are found to be (-133˚, 

142˚), and the Val6 CO - Phe8 H
N distance is 4.6 Å. These constrain the middle of the N-

terminal strand to a relatively ideal antiparallel β-sheet conformation. In contrast, the φ 

angle of Gly10 is ±85˚, consistent with a β-turn conformation. Thus, TP adopts a β-

hairpin conformation with straight strands, similar to its structure in aqueous solution but 

different from a recently reported structure in DPC micelles where bending of the two β-

strands were observed. The Val6 and Gly10 CO are both 6.8 Å from the lipid 31P while the 

Val6 sidechain is in 1H spin diffusion contact with the lipid acyl chains. These findings 

suggest that TP is immersed in the glycerol backbone region of the membrane, and is 

oriented roughly parallel to the plane of the membrane. This depth of insertion and 

orientation differ from the analogous β-sheet antimicrobial peptide protegrin-1, and 

suggests the importance of structural amphiphilicity in determining the location and 

orientation of membrane peptides in lipid bilayers.  

 

Introduction   

 Tachyplesin I (TP) is a disulfide-linked 17-residue antimicrobial peptide produced 

from the hemocytes of the horseshoe crab, Tachyplesus tridentatus (1). As a member of 

the antimicrobial peptide family, it is a component of the host defense system against 

microbial attacks (2). The interaction of TP with lipid membranes has been investigated 

in detail (3). It causes calcein leakage in phosphatidylglycerol-containing lipid vesicles 
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(4) and forms anion-selective pores (5). Concomitant to pore formation, TP translocates 

across the membrane. At long times, the peptide micellizes the membrane, as shown by 

electron microscopy and light scattering experiments (6).  

 Despite much information on the membrane interaction of TP, high-resolution 

structure of the peptide in lipid bilayers is so far unavailable. 1H solution NMR studies of 

TP in water showed that TP has an antiparallel β-sheet conformation organized as a 

hairpin held by two cross-strand disulfide bonds, Cys3-Cys16 and Cys7-Cys12 (7, 8). In 

320 mM dodecylphosphocholine (DPC) micelle solution, the peptide was found to 

undergo a significant conformational change where both the N- and C-terminal strands 

curl up around the middle of each strand (8) (PDB accession code: 1MA5). In contrast, in 

60 mM DPC micelles a straight β-hairpin conformation similar to the structure in water 

was found (9) (PDB accession code: 1WO1). This difference prompts the question of 

what the TP structure is in the most biologically relevant environment of lipid bilayers. In 

addition to the peptide conformation, the orientation and depth of insertion of TP also 

give important insights into the mechanism of action of the peptide, and have not been 

studied in detail.   

 In this work, we employ solid-state NMR spectroscopy to investigate the 

conformation and topology of TP in dimyristoylphosphatidylcholine (DMPC) bilayers 

and in mixed DMPC and dimyristoylphosphatidylglycerol (DMPG) membranes. 

Combining (φ, ψ) torsion angle measurements and distance experiments, we find that 

Val6 and Cys7, two residues in the middle of the N-terminal strand, adopt a canonical 

antiparallel β-sheet conformation, while Gly10 has a φ torsion angle consistent with a β-

turn. Thus, no bending is observed in the β-strands in the lipid bilayer. We also 

determined the distances of the peptide to the lipid 31P and to the lipid chain CH2 protons. 

These data indicate that TP is immersed in the glycerol backbone region of the membrane 

in parallel to the plane of the membrane.  
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Materials and Methods  

Preparation of membrane samples.  

Isotopically labeled amino acids were purchased from Isotec (Miamisburg, OH) 

and Cambridge Isotope Laboratory (Andover, MA) and converted to Fmoc derivatives in 

house or by Synpep Corp. TP (NH2-KWCFRVCYRGICYRRCR-CONH2) was 

synthesized on an ABI 431A synthesizer using standard solid phase methods as described 

before (10). The purity of TP was greater than 95% based on analytical HPLC.  

Isotopically labeled TP was reconstituted into lipid membranes by mixing the 

peptide solution and the lipid vesicle solution above the phase transition temperature of 

the lipids. A peptide/lipid molar ratio of 1:15 was used for all samples, in order to obtain 

sufficient sensitivity for the NMR experiments. Either neutral DMPC membrane or 

anionic DMPC/DMPG membrane (3:1) was used. Our recent 31P NMR studies showed 

that TP interacts with POPC and POPC/POPG (3:1) mixtures in a very similar fashion, 

thus the peptide structure is expected to be the same in the two membranes (11). The 

peptide-lipid solution was ultracentrifuged and the wet pellet was used for the C-H 

REDOR experiments. Binding of peptide to the lipid was ~90% based on UV-VIS 

absorption. For torsion angle measurements, 1H spin diffusion and 13C-31P REDOR 

experiments, the peptide-lipid solution was lyophilized and rehydrated to 35 wt% water.  

For the 13C-31P REDOR experiments, 20 wt% trehalose was added to the solution and the 

membrane mixture was lyophilized and directly used for the experiment. The 

replacement of water by trehalose, or lyoprotection, retains the lamellar structure of the 

membrane without the excessive lipid motions (12). The removal of lipid headgroup 

motion is necessary for measuring the distances between the lipid and the peptide.  

 

NMR experiments.  

All NMR experiments were carried out on a Bruker DSX-400 spectrometer 

(Karlsruhe, Germany) operating at a resonance frequency of 400.49 MHz for 1H, 162.12 

MHz for 31P, 100.70 MHz for 13C, and 40.58 MHz for 15N. Triple-resonance MAS probes 

with a 4 mm spinning module was used. Low temperature experiments were conducted 

using air cooled by a Kinetics Thermal Systems XR air-jet sample cooler (Stone Ridge, 
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New York). Typical cross polarization (CP) time was 0.7 ms, except for the 1H-15N Lee-

Goldburg cross polarization (LG-CP) time in the C-H REDOR experiment, which was 

100 µs to ensure that only the amide proton polarization is detected through 15N. Typical 

radiofrequency (rf) fields were 50 kHz, except for 1H dipolar decoupling during 

heteronuclear pulses and 1H homonuclear decoupling, which used stronger rf fields of 

~75 kHz. The signal averaging time for each experiment was typically 1-2 weeks. 13C 

and 15N chemical shifts were referenced externally to the α-Gly 13CO signal at 176.49 

ppm on the TMS scale and the N-acetyl-valine 15N signal at 122.0 ppm on the NH3 scale.  

 

Torsion angle measurements.   

The Val6 ψ torsion angle was measured using the NCCN technique, which 

correlates the 15Ni-
13Cαi and 13COi-

15Ni+1 dipolar couplings to obtain the relative 

orientation of the two bonds (13, 14).  13Cα-13CO double quantum coherence was excited 

by the SPC5 sequence (15), evolved under the 13C-15N dipolar coupling, which was 

recoupled by a REDOR pulse train (16). For each REDOR mixing time, a reference 

spectrum (S0) without the 15N pulses and a dephased spectrum with the 15N pulses were 

measured. The average of the S/S0 values of the Cα and CO signals was plotted as a 

function of mixing time to yield a ψ-angle dependent curve.  This was fit to obtain the ψ-

angle. The samples were spun at 5-6 kHz for the NCCN experiment, and the pulse 

sequence was tested on the tripeptide Gly-Ala-Leu (17) previously.  

The φ torsion angle of Val6 was measured using the HNCH technique, which 

correlates the 1HN-15N and 13Cα-1Hα dipolar couplings (18). 1H homonuclear decoupling 

during the heteronuclear evolution was achieved using MREV-8. The measured HN-N-

Cα-Hα angle (φH) is related to the conventional φ-angle according to φ=φH+60. A slow 

spinning speed of 3.472 kHz was used to optimize the performance of MREV-8 

homonuclear decoupling. The HNCH experiment was tested on the model amino acid N-

acetyl-valine (18). Both the NCCN and HNCH experiments were conducted at 233 K to 

eliminate undesired local motion.  

The Gly10 φ angle was determined by a 13CO-1HN REDOR distance experiment, 

as the α-CH2 group of Gly prohibits the use of the HNCH technique (19). As usual, two 
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experiments were conducted for each mixing time, one without the 13C π pulses (S0) and 

the other with the 13C pulses (S).  The time dependent S/S0 determines the coupling 

strength. Incomplete dephasing due to π pulse imperfections was taken into account by a 

scaling factor of 0.9 for the simulated REDOR curves. The Gly10 REDOR data was 

acquired at 238 K at 3.472 kHz MAS.  

 

Distance measurements. 

The Val6 
13CO - Phe8 

1HN distance was measured using the 15N-detected 13C-1H 

REDOR experiment (20). 1H homonuclear decoupling during the REDOR mixing period 

was achieved using the MREV-8 sequence, with 90˚ pulse lengths of ~3.5 µs and 

synchronized with an MAS spinning speed of 3472 Hz. The experiment was recently 

demonstrated on the model compound [15N, 13CO] labeled N-tBoc-glycine and yielded 

two distances (3.09 Å and 2.78 Å) that are consistent with the crystal structure (19). To 

account for dephasing of the HN signal by natural abundance 13C sites, we also measured 

the REDOR dephasing on a control TP sample with the Phe8 
15N-label but no 13C 

labeling. This 13C natural abundance (n.a.) sample gave a S/S0 plateau of ~0.93. The 

REDOR dephasing of only the 13C label was then calculated as 

S S0( )label = S S0( )total − S S0( )n.a.+0.93[ ] 0.93. The experiment was conducted at 233 

K to ensure the dipolar couplings are in the rigid limit.  

 The lipid 31P - peptide 13CO distances were measured using 13C-31P REDOR. A 

single 13C π pulse and multiple 31P π pulses were applied.  The dephasing of the natural 

abundance lipid 13CO was measured with a control experiment on 13C unlabeled TP. The 
13C-31P REDOR simulations are the weighted average of the curves of the labeled and the 

unlabeled peptide, S S0( )total = 0.68⋅ S S0( )label + 0.32⋅ S S0( )n.a., where the weight 

fractions are calculated based on the peptide/lipid molar ratio. The experiment was 

carried out at 253 K at 5 kHz MAS. 

Qualitative information on the depth of insertion of TP was obtained from a 2D 
1H spin diffusion experiment where spin diffusion from lipid and water protons to the 

peptide is detected through the peptide 13C signals (21). The spin diffusion mixing times 
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varied from 0.1 ms to 400 ms. A 1H T2 filter of 2 ms prior to the 1H evolution period was 

used to destroy the 1H magnetization of the rigid peptide while retaining that of the 

mobile lipids and water. 110 t1 points were collected in the indirect 1H dimension. The 

experiments were conducted at 299 K at 4 kHz MAS.  

 

Results  

Secondary structure of TP in DMPC bilayers.  

To constrain the secondary structure of TP in lipid bilayers, we measured the (φ, ψ) 

torsion angles of Val6. Laederach et al found this residue to be the hinge of a bent 

conformation in 320 mM DPC micelles (8), while Kawano and coworkers found the 

peptide to have straight β-strands in 60 mM DPC micelles (9). We measured the Val6 (φ, 

ψ) angles directly in DMPC bilayers by correlating the dipolar couplings along the two 

bonds flanking the torsion bond of interest. For the φ angle, this involves the N-H and 

Cα-Hα dipolar couplings (18), while for the ψ angle, the N-Cα and C’-N dipolar 

couplings are correlated (13). Figure 4.1 shows the NCCN (a) and HNCH (b) curves of 

TP with uniformly 13C, 15N-labeled Val6 and 15N labeled Cys7. The NCCN data is best fit 

with |ψ| = 142˚±2, while the HNCH data gives |φH| = 167˚ ± 10˚, as shown by the RMSD 

analysis (Figure 4.1c, d). Since φ = φH + 60˚, the φ angle is –133˚ ± 10˚ or –107˚±10˚. 

Combined, the two torsion angles indicate that Val6 adopts a canonical antiparallel β-

sheet conformation. Each experiment gives two degenerate angles due to the uniaxial 

nature of the dipolar coupling tensor. However, the negative ψ angle can be ruled out 

since it occurs in an unpopulated region of the Ramachandran diagram for Val residues. 

For the φ angle results, the –107˚ value is closer to that of the parallel β-sheet 

conformation. However, typical parallel β-sheets have a ψ angle of about +110˚, which is 

ruled out by the NCCN data. 

Figure 4.2 shows the (φ, ψ) Ramachandran diagram of Val6 where the solid-state 

NMR results (circles) are compared with the two solution NMR results. The high-

concentration DPC micelle data, which is an ensemble of 30 structures (squares), shows 

significant conformational distribution. In comparison, the conformation in DMPC 
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bilayers obtained from solid-state NMR clearly falls into the β-sheet region of the 

diagram with a relatively small angular distribution. The ordered nature of the peptide 

conformation is also reflected in the 13C linewidths of Val6 and Gly10, which are ~2.8 

ppm. This conformational homogeneity is similar to the low-concentration DPC micelle 

result (diamond).  
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Figure 4.1.  (φ, ψ) torsion angles of Val6 of TP in DMPC bilayers at 233 K. (a) The NCCN data 

for ψ angle determination. A representative spectrum, with an N-C mixing time of 667 µs, is 

shown. Best fit is obtained with ψ = ±142° (solid line), flanked by the curves for ±144° (dashed 

line) and ±140° (dotted line). The simulated curve for ψ = ±80° (dash dotted line) is also shown 

and deviates from the data at long time. (b) The HNCH data for φ angle determination. A 

representative spectrum is shown. Best fit is obtained with φH = ±167° (solid line), flanked by the 

curves for ±177° (dashed line) and ±157° (dotted line). RMSD plots comparing the experiment 

with the simulations for the NCCN (c) and HNCH (d) data quantitatively indicate the best-fit 

torsion angles. 
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 13C isotropic chemical shifts of Val6 support the torsion angle results. The CO and 

Cα shifts are 171.9 ppm and 57.6 ppm, respectively. These differ from the random coil 

values by –2.1 ppm and –2.8 ppm, indicating a well-defined β-sheet structure (22). 
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Figure 4.2. The Ramachandran diagram of TP Val6 in DMPC bilayers measured by solid-state 

NMR (open circles). For comparison, the ensemble of 30 solution NMR structures of TP in 320 

mM DPC micelle solution (filled squares) and the single structure in 60 mM DPC micelle 

solution (open diamond) are shown.   

 

To further constrain the conformation of TP in the central part of the N-terminal 

strand, we measured the distance between Val6 CO and Phe8 H
N. This distance spans five 

covalent bonds and thus depends on the torsion angles of the central three bonds, N7-Cα7, 

Cα7-CO7, and CO7-N8. The CO7-N8 peptide bond has a known torsion angle of 180˚. 

Thus, the Val6 CO – Phe8 H
N distance is mainly determined by the (φ, ψ) angles of Cys7. 

The CO-HN REDOR data is shown in Figure 4.3. The S/S0 decays to 0.72 by 4.03 ms. 

The data has been corrected for dephasing by natural abundance 13CO sites in the lipid 

and the peptide through a control experiment on 13C unlabeled but Phe8 
15N-labeled TP in 

DMPC membrane. The corrected data is best fit by a C-H distance of 4.6 ± 0.2 Å. To 

convert this distance to Cys7 (φ, ψ) torsion angles, we display the CO6-H
N

8 distance as a 

function of (φ, ψ) angles in Figure 4.4. The 4.6 Å distance (bold lines) is near the 

maximum physically allowed distance of 4.9 Å between the two atoms, and is satisfied 
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by relatively large ψ angle values. Excluding negative φ and ψ angles, which are outside 

the allowed regions of the conformational space for this non-Gly residue, we find that the 

Cys7 torsion angles are closest to the antiparallel β-sheet structure, consistent with the 

direct Val6 torsion angle measurement results. 
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Figure 4.3.  15N-detected Val6 
13CO – Phe8 

1HN REDOR data of TP in DMPC/DMPG membrane. 

Representative 15N S0 and S spectra are shown for a mixing time of 2.88 ms. The S/S0 values had 

been corrected for dipolar dephasing by natural abundance 13CO sites. Best fit is obtained at a 

distance of 4.6 Å ± 0.2 Å. The 3.1 Å curve (dashed line) predicted from the high-concentration 

DPC micelle structure is shown for comparison. Simulated curves were scaled by 0.9 to account 

for incomplete dephasing due to pulse imperfections (24).  

 

TP contains two disulfide bonds, Cys7-Cys12 and Cys3-Cys16. These impose strong 

constraints on the conformation of residues 8-12. Solution NMR data show these residues 

to form a β-turn in both water and micelles (8). However, the β-turn nature of these 

residues in lipid bilayers has not been directly verified. Thus, we measured the Gly10 φ 

torsion angle. Since Gly has two Hα protons, the HNCH experiment cannot be used. 

Instead, we measured the intra-residue three-bond CO – HN distance, which is determined 

only by the torsion angle of the central N-Cα bond, i.e. the φ angle. Figure 4.5a shows the 

CO-HN REDOR data of Gly10 
13CO, 15N-labeled TP in DMPC bilayers. In contrast to the 

Val6-Phe8 C-H REDOR data, the Gly10 dephasing was rapid, reaching a low S/S0 value of 

~0.2 by 2.3 ms. Simulation yielded a distance of 3.05 ± 0.10 Å. Figure 4.5b shows the φ-
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angle dependence of the CO-HN distance. The 3.05 Å distance corresponds to a φ angle 

of ±85˚, and the angular uncertainty from the distance measurement is ±15˚. The φ angle 

of ±85˚ is distinct from that of the standard α-helix and β-sheet conformations, but 

corresponds to a β-turn conformation. Since Gly10 is at the putative i+2 position of the 

turn, this value is consistent with a type I, I’, II, II’, V, or V’ β-turn (23).  
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Figure 4.4. Val6 CO –Phe8 H
N distance as a function of Cys7 (φ, ψ) angles. A peptide-bond 

torsion angle of 180° and standard bond angles and bond lengths were used. The 4.6 Å distance 

contour is shown in bold. The positions of the standard β-sheet and α-helical conformations are 

indicated for comparison.   

 

Membrane binding topology. 

To quantitatively determine the depth of insertion of TP in lipid bilayers, we 

carried out a 13C-31P REDOR experiment between 13CO-labeled TP and the lipid 31P in 

DMPC/DMPG (3 : 1) bilayers. To ensure that the lipid motion is frozen, we used 

trehalose-cryoprotected dry lipid membrane. The 13C-31P REDOR curves for Val6 
13CO 

and Gly10 
13CO after natural abundance correction are shown in Figure 4.6. The two 

labels show very similar S/S0 values, both of which are best fit to a 13C-31P distance of 6.8 

± 0.4 Å. For simplicity, only two-spin simulations are used here to fit the distance data, 

since the main conclusion of interest is the relative distance of Val6 and Gly10 from the 
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phosphate groups. Multi-spin simulations (25) incorporating, for example, three 31P 

atoms, do not increase the vertical distance between the 31P plane and the 13C label, even 

though they yield individual 13C-31P distances that are ~1.0 Å longer than that of the two-

spin simulation. Thus, the depths of insertion of the Val6 and Gly10 residues from the 

membrane plane are similar and both 6-7 Å.  
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Figure 4.5. TP Gly10 φ angle determination by CO-HN REDOR. (a) Intraresidue 13CO-1HN 

REDOR curve. Best fit is obtained with a distance of 3.05 Å (506 Hz, solid line). Simulated 

curves for 3.15 Å (458 Hz, dashed line) and 2.93 Å (566 Hz, dotted line) are shown to indicate 

the uncertainty. The C-H couplings have been scaled by the MREV-8 scaling factor of 0.47. 

Simulated curves are scaled by 0.9 from the ideal REDOR curve to account for incomplete 

dephasing due to pulse imperfections. Representative S0 and S spectra are shown for a mixing 

time of 2.3 ms. (b) The curve relating the CO-HN distance to the φ torsion angle. For distances of 

2.93 Å, 3.05 Å, and 3.15 Å, the φ angles are ±100˚,  ±85°, and ±70˚, respectively.  

 

 Complementing the 13C-31P experiment, a 2D 1H spin diffusion experiment was 

used to measure the proximity of the peptide to the lipid chains in the center of the 

membrane. Figure 4.7 shows two 2D 13C-detected 1H spin diffusion spectra, acquired 

with a mixing time of 0.1 ms (a) and 100 ms (b). No lipid 1H – peptide 13C cross peaks 

are observed at 0.1 ms while clear cross peaks between the water protons (4.6 ppm) and 

Val6 Cγ (19.6 ppm) and between the lipid CH2 protons (1.3 ppm) and Val6 Cγ are 

detected at 100 ms. The lack of cross peaks at 0.1 ms is an important control proving that 

the magnetization of the mobile Val methyl protons directly bonded to the detected Cγ is 
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suppressed by the 1H T2 filter. Thus, the 1.3-ppm cross peak at longer mixing times must 

originate from the mobile lipid chain protons. Previous experiments on DNA intercalated 

with multilamellar lipid membranes indicate that when a macromolecule is bound to the 

membrane surface, ~20 Å from the hydrophobic center, it exhibits virtually no cross 

peaks with the lipid chain protons in 100 ms. Thus, the presence of a clear lipid CH2 

cross peak with TP qualitatively indicates that the peptide is immersed in the membrane, 

below the 31P-rich membrane surface. The Val6 Cγ 1H cross sections for a number of 

mixing times are shown in Figure 4.7c. The T1-corrected CH2 intensities show a 

monotonic increase without reaching a plateau by 400 ms (not shown). This differs from 

transmembrane proteins such as colicin Ia channel domain (21) or protegrin-1 (26), 

whose CH2/CH3 cross peaks reach a plateau by about 100 ms. Thus, the depth of 

insertion of TP is intermediate between completely surface bound molecules and fully 

membrane spanning molecules. Extraction of more quantitative distances from the cross 

peak intensity buildup is difficult because TP backbone is mobile in the liquid-crystalline 

phase of the membrane at this temperature, as evidenced by the lack of the Val6 backbone 
13C signals in the spectra (not shown). This peptide mobility reduces the diffusion 

coefficient contrast between the lipid and the peptide, which is necessary for the distance 

quantification (21).  
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Figure 4.6.  13C-31P REDOR data of TP in DMPC/DMPG/trehalose membrane. The Val6 
13CO 

(circles) and Gly10 
13CO (squares) data are shown. Best fit for both is obtained at a 13C-31P 

distance of 6.8 Å (39 Hz, solid line) using a two-spin simulation. Simulated curves for 7.2 Å (33 

Hz, dashed line) and 6.5 Å (45 Hz, dotted line) are also shown to indicate the distance 

uncertainty. Representative S0 and S spectra are shown for a mixing time of 25.6 ms for the Val6 

data. 
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Figure 4.7. 13C-detected 1H spin diffusion spectra of uniformly Val6-
13C, 15N-labeled TP in 

DMPC membrane at 299 K. (2) 2D spectrum after a mixing time of 0.1 ms. No Val6 Cγ peaks are 

observed. (b) 2D spectrum at a mixing time of 100 ms. Val6 Cγ cross peaks with water and lipid 

CH2 protons are detected (dotted circles). The 13C projection is shown on top of each 2D 

spectrum. Note the absence of the Val Cγ signal at 0.1 ms. (c) Val6 Cγ 1H cross sections for 

various spin diffusion mixing times.   

 

Discussion 

 The above data indicates that the N-strand of TP adopts an ideal antiparallel β-

sheet conformation in DMPC bilayers. The Val6 residue has (φ, ψ) torsion angles of (-

133˚, 142˚). The Val6 
13CO - Phe8 H

N distance is 4.6±0.2 Å, which is satisfied by an 

antiparallel β-sheet conformation for Cys7. At Gly10, a non-sheet φ angle of ±85˚±15˚ was 

measured, which is consistent with the i+2 residue of a type I, I’, II, II’, V or V’ β-turn 

conformation. This confirms that the two disulfide bonds indeed constrain the overall 

peptide fold to a β-hairpin in lipid membranes. For comparison, the solution NMR results 

for Gly10 φ angle are -154˚ in low concentration DPC micelles and 114˚ ± 55˚ in high 

concentration DPC micelles (8, 9).  

Figure 4.8a shows the DMPC-bound TP structure obtained by solid-state NMR. 

The structure is derived from the low-concentration DPC structure (Figure 4.8b) (9) by 
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making small changes in the Val6 and Cys7 and Gly10 (φ, ψ) angles to satisfy the distance 

and torsion angle constraints obtained here. When the Gly10 φ angle vas changed to 80˚, 

the other torsion angles of Arg9 and Gly10 also needed to be modified to retain the β-

hairpin motif. Molecular modeling shows that, when only standard β-turn torsion angles 

are used, then among the six possible β-turns consistent with the Gly10 data, only the type 

II β-turn gives a relatively ideal hairpin with collinear strands. This is the structure shown 

in Figure 4.8a. For comparison, Figure 4.8c shows a typical high-concentration DPC-

bound TP structure, with a pronounced curvature in the two strands around Arg5 and 

Arg14 (8). As a result, the high-concentration micelle structure has an average Val6 CO – 

Phe8 H
N distance of 3.1 Å, much shorter than the 4.6 Å distance measured in 

DMPC/DMPG bilayers.  
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Figure 4.8. Conformation of TP in (a) DMPC bilayers as determined by solid-state NMR, (b) 60 

mM DPC micelle solution (9), (c) 320 mM DPC micelle solution (8). The Val6 CO – Phe8 H
N 

distance differs in the three structures. The structures were visualized in the Insight II 

environment.  

 

 Induction of peptide curvature by detergent micelles has been observed before. 

For example, the HIV-1 envelope protein gp41 shows a bent α-helical structure in DHPC 

micelles but becomes a straight helix in bicelles aligned in stretched polyacrylamide gel 

(27). Such curvature is usually attributed to the small size of the micelles compared to 

lipid bilayers or bicelles. However, this curvature mechanism seems inadequate for 

explaining the different TP structures in the 60 mM and 320 mM DPC micelle solutions, 

since both concentrations are above the critical micelle concentration of DPC. In fact, the 
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higher concentration suggests larger micelles and would thus be expected to cause less 

peptide curvature. The main experimental constraints for the bent structure are long-range 
1H NOE cross peaks between Trp2 and Arg9, Phe4 and Val6, and Tyr13 and Arg15 (8). We 

speculate that these cross peaks could originate from intermolecular, rather than 

intramolecular, contacts, as a result of peptide oligomerization in the high-DPC 

concentration sample.  

 The most intriguing aspect of the TP structure is its depth of insertion and 

potential orientation. If the peptide fully spans the membrane, perpendicular to the 

membrane plane, then one would expect Val6 in the middle of the N-terminal strand to be 

located in the hydrophobic part of the membrane, far from the lipid headgroups, while 

Gly10 at the β-turn would be much closer to the headgroups. However, the 13C-31P 

distance measurements showed that Val6 and Gly10 carbonyl carbons are equidistant, 6.8 

± 0.4 Å, from the 31P atoms of the DMPC/DMPG membrane. This strongly suggests that 

the β-hairpin is approximately parallel to the membrane surface (Figure 4.9a). Moreover, 

since the 1H spin diffusion experiments indicate that the Val6 Hγ protons receive 

magnetization from the lipid CH2 protons in 100 ms, which is fast compared to 

membrane-surface-bound molecules such as DNA (21), Val6 must be immersed below 

the membrane surface, not far from the top of the acyl chains. Thus, combining the 

distance constraints to 31P and to the lipid CH2 protons, TP is most likely immersed in the 

glycerol backbone and lipid carboxyl region. In fact, the peptide-lipid 13C-31P distance is 

very similar to the intramolecular lipid 13CO – 31P distance, further supporting this 

conclusion.  

Figure 4.9a shows the solid-state NMR refined TP structure in a planar 

orientation, superimposed with a schematic representation of liquid-crystalline DMPC 

bilayers. The thickness of the bilayer is obtained from a MD simulation (28) and is drawn 

to scale with TP. Immersed in the membrane, each β-hairpin would have nine unsatisfied 

hydrogen bonds exposed to the interfacial region of the bilayer. White and coworkers 

(29) estimated an energy penalty of 0.5 kcal/mol for the transfer of an unsatisfied 

hydrogen bond from the aqueous solution to the membrane interface. However, this 

energy cost is likely balanced by the favorable insertion of the hydrophobic sidechains of 
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Trp2, Phe4 Tyr8 and Try13 in TP. It is also possible that TP is oligomerized in the lipid 

membrane, as we found for the analogous peptide PG-1 (30, 31), which would reduce the 

number of unsatisfied hydrogen bonds per molecule.  

 

Figure 4.9. Models of TP binding to DMPC bilayers. TP and DMPC bilayer thickness are drawn 

to scale. (a) TP is immersed in the glycerol backbone region in a horizontal fashion. (b) TP is 

oriented normal to the membrane plane and partially inserted. (c-d) Sidechain hydrophobicities of 

TP in the two orientations. Red indicates hydrophobic residues (Val, Phe, Trp, Ile and Cys), blue 

indicates hydrophilic residues (Arg, Lys), and purple indicates Tyr.  

 

The current data does not rule out an alternative scenario where TP may be 

partially inserted into the lipid bilayer in a transmembrane orientation, with Gly10 CO 

outside the membrane surface while Val6 CO below the membrane surface, equidistant 

from the 31P atoms (Figure 4.9b). In this way, the Val6 sidechain can still be in spin 

diffusion contact with the lipid CH2 protons. However, this transmembrane orientation is 

less likely than the planar orientation for several reasons. First, the peptide is not long 

enough to span the DMPC bilayer in a transmembrane fashion, especially if the Gly10-
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including β-turn is outside the membrane surface (Figure 4.9b). Second, polar residues 

such as Arg5, Arg14, Arg15 would be embedded in the hydrophobic region of the 

membrane, which is energetically costly. Third, the distribution of the polar and non-

polar residues in TP makes a transmembrane orientation and insertion unfavorable. 

Figure 4.9c-d show the sidechain hydrophobicity of TP in these two orientations. A 

mostly hydrophobic face is present in the peptide, consisting of Trp2, Phe4, Val6, Cys7, 

and Tyr8 sidechains. The other face mainly consists of the polar Arg and Lys residues. 

The horizontal orientation places the hydrophobic face towards the hydrophobic interior 

of the membrane while the cationic face towards the polar exterior. In contrast, the 

transmembrane orientation makes this amphiphilic interface of the peptide perpendicular 

to that of the membrane, which is unfavorable.   

 The above interpretations of the depth of insertion of TP assume that the lipid 

bilayer maintains its lamellar structure in the presence of TP, without any defects that 

would destroy the planarity of the membrane surface where the 31P atoms are. This 

assumption is valid for the DMPC and DMPC/DMPG membranes used here. Our recent 

glass-plate oriented 31P spectra for TP-including membranes showed that the peptide does 

not perturb the orientational order of neutral POPC bilayers nor POPC/POPG 

membranes, but create isotropic vesicles in POPE/POPG lipid mixtures (11). Direct 31P 

powder spectra (not shown) of the MAS samples used here also confirm the lack of any 

isotropic peaks. Thus, there is no detectable pore structure in the membrane under the 

current experimental conditions.  
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Figure 4.10. Amino acid sequence of (a) TP and (b) PG-1.  
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 The conclusion that TP is parallel to the membrane plane and immersed in the 

interfacial region of the membrane is in good qualitative agreement with polarized 

attenuated total reflection Fourier transform infrared (ATR-FTIR) data (6): the dichroic 

ratio of the amide I’ band is consistent with the β-sheet lying parallel to the plane of the 

membrane, while the lipid CH2 symmetric stretching band indicates that the order 

parameter of the acyl chains is slightly reduced by TP, indicating that the peptide 

penetrates slightly into the hydrophobic region of the membrane. In addition, Trp 

fluorescence data indicated that Trp2 of TP is located in the hydrophobic environment 

near the surface of the lipid membrane (4).  

 A related study on a cysteine-deleted version of TP (CDT) was recently carried 

out. On the basis of the effect of CDT on the phase transition of the lipids observed 

through DSC, the authors suggested that the peptide is located at the membrane interface 

without being inserted into the hydrophobic part of the membrane (32). If confirmed by 

direct orientation measurements, this would suggest that an in-plane orientation may be a 

common feature of the TP family of peptides as a result of its distribution of hydrophobic 

and hydrophilic residues and independent of the disulfide bonds. A similar in-plane 

orientation was also suggested for the hydrophilic disulfide-bridged β-sheet peptide 

androctonin, based on the dichroic ratios of the lipid chain CH2 stretching bands in the 

polarized ATR-FTIR spectra (33). However, androctonin was thought to be lying on the 

surface of the membrane rather than in the interfacial region, since the lipid order 

parameter did not change upon peptide binding.  

 Interestingly, the proposed membrane insertion and orientation of TP are quite 

different from those of protegrin-1 (PG-1), a similar disulfide-stabilized β-hairpin 

antimicrobial peptide. 1H spin diffusion and paramagnetic dephasing experiments clearly 

indicated that PG-1 completely spans the lipid membrane (26, 34). Direct orientation 

measurement indicated that the β-strand axis of PG-1 is tilted by about 55˚ from the 

membrane normal in thin DLPC bilayers (10). Comparing the amino acid sequences of 

the two peptides (Figure 4.10), the main difference is that TP has two cationic Arg 

residues in the middle of the C-terminal strand while the middle of the PG-1 C-terminal 

strand is completely hydrophobic. The remaining charges are distributed in similar 
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positions of the two peptides. Thus, it appears that small changes in charge distribution 

can significantly affect the membrane-bound structure of these antimicrobial peptides, 

and consequently their mechanisms of action.  

 In conclusion, we find that TP adopts a standard antiparallel β-sheet conformation 

in lipid bilayers with a β-turn at Gly10 connecting the two strands. No bending is present 

in the middle of the two strands. The peptide is immersed in the glycerol backbone region 

of the membrane, with Val6 and Gly10 CO equidistant from the lipid 31P, and with the 

Val6 sidechain in close spin diffusion contact with the lipid acyl chain CH2 protons. 

These suggest a planar orientation of the peptide in DMPC and DMPC/DMPG bilayers. 

Further experiments involving direct orientational determination is necessary to 

definitively determine the membrane binding topology of TP.  
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Abstract 

 Tachyplesin-I (TP-I) is a 17-residue β-hairpin antimicrobial peptide containing 

two disulfide bonds. Linear analogs of TP-I where the four Cys residues were replaced by 

aromatic and aliphatic residues, TPX4, were found to have varying degrees of activities, 

with the aromatic analogs similarly potent as TP-I. Understanding the different activities 

of the linear analogs should give insight into the mechanism of action of TP-I. To this 

end, we have investigated the dynamic structures of the active TPF4 and the inactive 

TPA4 in bacteria-mimetic anionic POPE/POPG bilayers and compared them with the 

wild-type TP-I using solid-state NMR spectroscopy. 13C isotropic chemical shifts and 

backbone (φ, ψ) torsion angles indicate that both TPF4 and TPA4 adopt β-strand 

conformations without a β-turn at key residues. 1H spin diffusion from lipid chains to the 

peptide indicates that the inactive TPA4 binds to the membrane-water interface, similar 

to the active TP-I. Thus, neither the conformation nor the depth of insertion of the three 

peptides correlates with their antimicrobial activities. In contrast, the mobility of the three 

peptides correlates well with their activities: the active TP-I and TPF4 are both highly 

mobile in the liquid-crystalline phase of the membrane while the inactive TPA4 is 

completely immobilized. The different mobilities are manifested in the temperature-

dependent 13C and 15N spectra, 13C-1H and 15N-1H dipolar couplings and 1H rotating-

frame spin-lattice relaxation times. The dynamics of TP-I and TPF4 are both segmental 

and global. Combined, these data suggest that TP-I and TPF4 disrupt the membrane by 

large-amplitude motion in the plane of the membrane. The loss of this motion in TPA4 

due to aggregation significantly weakens its activity because a higher peptide 

concentration is required to disturb lipid packing. Thus molecular motion, rather than 
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structure, appears to be the key determinant for the membrane-disruptive activities of 

tachyplesins.  

 

Introduction 

 Tachyplesin I (TP-I) is a 17-residue disulfide-linked β-hairpin antimicrobial 

peptide found in the hemocytes of the horseshoe crab Tachyplesus tridentatus (1). It is 

active against a broad spectrum of Gram-negative and Gram-positive bacteria and fungi, 

with minimum inhibitory concentrations (MICs) from 0.3 µM to 13 µM (2, 3). Compared 

to other β-hairpin antimicrobial peptides, TP-I is similarly effective as PG-1 and more 

potent than RTD-1 (4). The MIC of TP-I against the Gram-negative bacteria E. coli is 1 

µM, and the MICs against maize fungal pathogens such as F. graminearum are in the 

range of 8-13 µM. Since peptides without disulfide bonds are easier to synthesize, linear 

analogs with potent activities but low toxicities are desirable. A number of structure-

activity studies have been carried out on linear derivatives of TP-I, where the two 

disulfide bonds constraining the β-hairpin structure were removed (3, 5, 6). Interestingly, 

unlike the β-hairpin  peptide PG-1 (7), several linear derivatives of TP-I retained most of 

the antimicrobial activities. For example, when all four cysteines were replaced by the 

aromatic residue phenylalanine (TPF4) or tyrosine (TPY4), the activities are comparable 

to those of the wild-type TP-I. The MICs of TPF4 against E. coli and fungal pathogens 

are 1 µM and 4-13 µM, respectively (3). This was thought to result from the retention of 

the β-hairpin structure in solution through aromatic ring stacking interactions, as 

suggested by 1H NMR data (5). In comparison, when the cysteines were substituted by 

alanine (TPA4), the antimicrobial activities are significantly attenuated (3). The MICs 

against E. coli and fungi increased to 3 µM and > 35 µM, respectively. This is thought to 

be related to the TPA4’s random coil structure in solution (5). However, despite their 

different conformations in solution, 31P NMR lineshapes of glass-plate aligned 

membranes shows that TPY4 and TPA4 cause similar membrane disorder, which differs 

from the isotropic disorder caused by TP-I (8). When the cysteine thiol groups were 

protected by acetamidomethyl (Acm) groups, the linear compound TP-Acm was found to 

cause less dye leakage than the wild-type TP-I but more membrane perturbation, as 
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shown by light scattering and electron microscopy data (9, 10). Recently, a TP-I mutant 

where all cysteines were deleted and not replaced by other residues was found to retain 

antimicrobial activity without significant hemolytic activity (6). The decrease in 

hemolysis was attributed to a decrease of the hydrophobic character of the peptide (11).  

 While these structure-activity studies provided valuable information on the 

biological and physical behaviors of various tachyplesin analogs, they do not provide a 

cohesive understanding why some linear analogs retain significant activities while others 

do not. This is partly due to the fact that the three-dimensional structures of these 

disulfide-removed peptides in the lipid membrane are generally unknown. To identify the 

key molecular structural factor that determines the antimicrobial activity of tachyplesins, 

we undertook a solid-state NMR study of the conformation, dynamics, and depth of 

insertion of two tachyplesin linear analogs, TPF4 and TPA4, in lipid bilayers. TPF4 and 

TPA4 were chosen because of their very different activities, which should be linked to 

distinct structural or dynamical properties. Solid-state NMR spectroscopy is a powerful 

tool for obtaining atomic-level high-resolution structure information and dynamics of 

proteins bound to lipid bilayers (12, 13). We use the anionic POPE/POPG (3:2) 

membrane to mimic the bacterial membrane. Combining conformation-dependent 13C 

isotropic chemical shifts and backbone (φ, ψ) torsion angles, we find that both the active 

TPF4 and inactive TPA4 have a β-strand conformation without a β-turn at key positions 

where TP-I adopts a turn conformation. Moreover, the insertion depth of the inactive 

TPA4 is at the membrane-water interface, the same as the active TP-I. In comparison, the 

mobility of the peptides in the membrane correlate with their activities: the active TP-I 

and TPF4 exhibit large-amplitude motions on the NMR timescales while the inactive 

TPA4 is immobilized. These dynamic differences were manifested in temperature-

dependent spectral intensities, motional narrowing of dipolar couplings and nuclear spin 

relaxation times. Thus, peptide motion in the membrane plays a central role in the 

antimicrobial activity of TP-I, in contrast to the well-studied β-hairpin peptide PG-1 (13, 

14).  
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Materials and Methods 

Preparation of membrane peptide samples. 
13C and 15N labeled amino acids were purchased from Sigma-Aldrich 

(Miamisburg, OH) and Cambridge Isotope Laboratory (Andover, MA) and converted to 

Fmoc derivatives in house. TP-I (NH2-KWCFRVCYRGICYRRCR-CONH2) was 

synthesized on an ABI 431A synthesizer using standard solid-phase Fmoc chemistry as 

described before (15). After purification of the reduced peptide by HPLC, the disulfide 

bonds were oxidized in 0.1% acetic acid at a concentration of 0.1 mg/ml at 25˚C for 24 h. 

The reaction was stopped by adding acetic acid to 5% followed by purification. The 

linear peptides TPA4 (NH2-KWAFRVAYRGIAYRRAR-CONH2) and TPF4 (NH2-

KWFFRVFYRGIFYRRFR-CONH2) were synthesized on an ABI 432A synthesizer. All 

peptides were purified by HPLC in an acetonitrile/water solvent system with 0.1% TFA 

on a Vydac C-18 reverse-phase column. MALDI mass spectrometry was used to confirm 

the identity of the peptides. Final purity of the peptides is greater than 95% as tested by 

analytical HPLC.  

 Three consecutive residues, G10, I11, and F12 in TPF4 and G10, I11, and A12 in 

TPA4, were uniformly labeled with 13C and 15N for measuring conformation-dependent 
13C isotropic chemical shifts. For TPF4, a second sample was synthesized that contained 

uniformly 13C, 15N labeled V6 and G10 and 15N labeled F7 and I11.  

Isotopically labeled peptides were reconstituted into POPE/POPG (3:2) 

membranes by mixing the aqueous peptide solution and the lipid vesicle solution at ~298 

K, above the phase transition temperature of the membrane, which is 291 K. A 

peptide : lipid molar ratio of 1:15 was used for all samples. The peptide-lipid mixture was 

ultracentrifuged at 150,000 g to give a wet pellet, which was then lyophilized and 

rehydrated to 35% water by mass. This procedure produces membrane samples with low 

salt concentrations and well-defined hydration levels.  

 

Solid-state NMR experiments. 

All NMR experiments were carried out on a Bruker DSX-400 spectrometer 

(Karlsruhe, Germany) operating at a resonance frequency of 400.49 MHz for 1H, 100.70 
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MHz for 13C, and 40.58 MHz for 15N. Triple-resonance MAS probes with a 4 mm 

spinning module was used.  Low temperature experiments were conducted using air 

cooled by a Kinetics Thermal Systems XR air-jet sample cooler (FTS Systems, Stone 

Ridge, New York). Typical cross polarization (CP) time was 0.5 ms with a Hartman-

Hahn match at 50 kHz.  13C and 15N 180˚ pulse lengths were typically 10 µs and 12 µs, 

respectively. 1H decoupling fields of 62 kHz were used during acquisition and 71-82 kHz 

were used during X-channel irradiation such as the SPC5 double-quantum period and the 

C-N REDOR period (see below). Recycle delays ranged from 1.5 s for frozen samples to 

2.5 s for room-temperature experiments to protect the protein from excessive radio-

frequency (rf) heating.  13C and 15N chemical shifts were referenced externally to the α-

Gly 13CO signal at 176.49 ppm on the TMS scale and the N-acetyl-valine 15N signal at 

122.0 ppm on the NH3 scale.  
13C chemical shift of labeled sites were assigned by a combination of 2D 13C-13C 

correlation experiments and 1D double-quantum-filter experiments (16). The TPA4 

experiments were carried out at 298 K while the TPF4 experiments were done at 263 K to 

freeze its motion. The 2D correlation experiments used the 1H-driven 13C spin diffusion 

pulse sequence, with a 50 ms mixing time under 8 kHz magic-angle spinning (MAS).  

 ψ torsion angles were measured using the NCCN technique, which correlates the 
15Ni-

13Cαi and 13COi-
15Ni+1 dipolar couplings to obtain the relative orientation of the two 

bonds (17, 18). 13Cα-13CO double quantum coherence was excited by the SPC5 sequence 

(16) and evolved under the 13C-15N dipolar coupling, which was recoupled by a REDOR 

pulse train (19). The SPC5 sequence used a 13C rf field of 25 kHz under 5 kHz MAS. The 

total double-quantum excitation and reconversion time was 800 µs. For each C-N 

REDOR mixing time, a reference spectrum (S0) without the 15N pulses and a dephased 

spectrum with the 15N pulses (S) were measured. S/S0 values of the Cα or CO peak were 

plotted as a function of the C-N mixing time to yield the ψ-dependent curve. The NCCN 

experiments were conducted under 5 kHz MAS at 233 K for TPF4 and 253 K for TPA4.  

The depth of insertion of TPA4 was measured using a 2D 1H spin diffusion 

experiment where 1H spin diffusion from the mobile lipid to the rigid peptide is detected 

via the peptide 13C signals (20). The rate of spin diffusion depends on the 1H-1H dipolar 
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coupling, which in turn depends on the distance between the peptide and the mobile lipid 

chains. The spin diffusion mixing times varied from 49 ms to 400 ms. A 1H T2 filter of 1 

ms was applied before the evolution period to destroy the initial magnetization of the 

rigid peptide while retaining that of the mobile lipids and water. 128 t1 points were 

collected in the indirect 1H dimension. The experiments were conducted at 298 K under 4 

kHz MAS. The peak heights from the 1D cross sections at various mixing times were 

processed in the following way to generate the buildup curve for distance fitting: they 

were first corrected for 1H T1 relaxation during the mixing time, small drifts in the CP 

efficiency, and differences in the number of scans. The corrected intensities were then 

normalized to the water-peptide cross peak intensity at 100 ms. The lipid-peptide cross 

peak intensities were further scaled by the lipid-to-water intensity ratio in the 1D 1H 

direct excitation spectrum. This accounts for the fact that even at spin diffusion 

equilibrium, the lipid-peptide cross peak intensity differs from the water-peptide cross 

peak intensity by a factor due to the different total magnetization of the lipid and water 

protons in the system.  
13C-1H and 15N-1H dipolar couplings were measured with the DIPSHIFT 

experiment either without (21) or with dipolar doubling (22, 23). The doubled DIPSHIFT 

experiment amplifies the effect of weak couplings under MAS and was used to measure 

the 15N-1H dipolar couplings and the 13C-1H couplings of mobile residues with 13C direct 

excitation. A spinning speed of 3.472 kHz was used, and an MREV-8 sequence with a 1H 

105˚ pulse length of 4.0 µs was used for 1H homonuclear decoupling (24).  

The 1H rotating-frame spin-lattice relaxation times, T1ρ, were measured using a 

Lee-Goldburg spin-lock sequence with a 1H effective spin-lock field strength of 68 kHz. 

A short Lee-Goldburg CP of 80 µs followed the spin lock period to achieve selective 

transfer of the 1H magnetization to its directly bonded 13C spin. The spin-lock 

experiments were conducted from 243 K to 310 K at a spinning speed of 5 kHz.  
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RESULTS  

Secondary structure of TPA4 and TPF4.  

 We have recently determined the conformation of TP-I in lipid bilayers through 

torsion angle, distance, and chemical shift constraints. These data indicate that TP-I 

adopts a regular β-hairpin structure in lipid bilayers, with G10 as the corner of the hairpin 

(25). In the present study, we focus on the secondary structure of the two variants, TPF4 

and TPA4, to compare with the previously studied wild-type peptide. To obtain 

conformation-dependent 13C isotropic chemical shifts we labeled residues 10-12 in TPF4 

and TPA4. These residues were chosen because G10 is the center of the β-turn in the 

wild-type TP-I, so these residues are the most likely to adopt non-β-sheet conformations 

(26). Residue 6, Val, was also labeled in TPF4 because this site was implicated as part of 

a turn in TP-I and TPY4 in dodecylphosphocholine (DPC) micelles (5).  

 A representative 2D 13C-13C correlation spectrum and 1D double-quantum-filtered 
13C spectrum are shown in Figure 5.1 for TPA4 bound to POPE/POPG bilayers. The CO, 

Cα, and Cβ peaks are well resolved, and their isotropic chemical shifts are summarized 

in supporting information Table S5.1. These experimental chemical shifts are compared 

to the random coil shift values of Zhang et al. for each amino acid (27) to obtain the 

secondary shifts, which provide qualitative information on the backbone conformation. 

All labeled residues in TPA4 and TPF4 give significantly negative CO and Cα secondary 

shifts and positive Cβ secondary shifts (Figure 5.2), which indicate β-strand 

conformation (27). In particular, the G10 CO chemical shifts are not close to the random 

coil value, suggesting that neither TPF4 nor TPA4 retain the β-turn of the wild-type 

peptide.  

 To obtain more quantitative constraints on the peptide conformation, we 

measured the ψ torsion angles using the NCCN technique (17, 18). For a triplet of 

consecutively labeled residues, the ψ torsion angles of the first two residues can be 

measured in this way. Figure 5.3 shows the NCCN data. For TPA4 (a), the best-fit ψ 

angles are 161 ± 10˚ for G10 and 157 ± 5˚ for I11, both confirming the β-sheet 

conformation. If a β-turn is present, as in wild-type TP-I, then G10 would be the i+2 
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residue of the turn, and the maximum ψ angle possible for the i+2 residue in all types of 

β-turn is 80˚ (28). This is incompatible with the data, as shown by an RMSD analysis 

(Figure 5.3b). It is worth noting that the NCCN technique has the highest ψ angle 

resolution between 140˚ and 180˚, thus it detects the β-sheet conformation with high 

accuracy. Due to the uniaxial nature of the dipolar coupling interaction, the sign of the ψ 

angle can be either positive or negative. However, the negative solution can be 

reasonably ruled out because they fall into an unpopulated region of the Ramachandran 

diagram.  

 

Figure 5.1. 2D 13C-13C correlation spectrum of G10, I11, A12-labeled TPA4, measured with a 50 

ms mixing time under 8 kHz MAS at 298 K. Superimposed at the top is the 1D 13C double-

quantum filtered spectrum with the peak assignment. 
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Figure 5.2. Secondary chemical shifts of CO, Cα and Cβ for labeled residues in (a) TPA4 and (b) 

TPF4. Random coil shifts are taken from (27). 

 

 For TPF4 (Figure 5.3c, d), the G10 NCCN data is best fit by a ψ angle 160 ± 5˚. 

Partial overlap of the I11 and F12 Cα peaks prevented the accurate extraction of the I11 

ψ angle. We also measured the V6 ψ angle on a V6, F7-labeled sample, and found a best-

fit ψ angle of 140 ± 5˚ (Figure 5.3c). This value also falls into the β-sheet regime, 

consistent with the V6 secondary chemical shifts. Additional φ torsion angle 

measurements using the HNCH technique (29) gave a V6 φ angle of -140˚ or –100˚ 

(supporting information Figure S5.1), confirming the β-strand conformation of this 

residue.  

 Therefore, the 13C chemical shifts and torsion angle results indicate that neither 

TPF4 nor TPA4 are bent at the G10 position where the wild-type TP-I has the β-turn. In 

addition, TPF4 exhibits a normal β-strand conformation at V6 in the lipid bilayer, similar 

to TP-I at this residue in lipid bilayers (25). Thus, no conformational difference exists 

between TPF4 and TPA4 in the lipid bilayer for the residues examined.  
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Figure 5.3. ψ torsion angles of TPA4 and TPF4 in the POPE/POPG bilayer from the NCCN 

experiment. (a, b) TPA4. The G10 and I11 data are best fit to ±161˚ and ±157˚, respectively, 

based on the RMSD analysis in (b). (c, d) TPF4. The V6 and G10 data are best fit to ±140˚ and 

±160˚, respectively, based on the RMSD analysis in (d). Representative spectra are shown for 

each sample in (a) and (c). The NCCN spectra were measured under 5 kHz MAS at 253 K for 

TPA4 and 233 K for TPF4. For comparison, the V6 ψ angle in TP-I was previously found to be 

±142˚ (25). 

 

Membrane binding topology of TPA4 

 The membrane-bound topology of proteins – whether they are transmembrane or 

bound to the membrane surface – can be measured using a 1H spin diffusion experiment 

that transfers the 1H magnetization from lipids to the protein in the liquid-crystalline (LC) 

phase (20). The experiment requires that the peptide be immobilized to receive the 1H 
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magnetization from the mobile lipids and water. TPF4 is dynamic in the LC phase of the 

membrane (see below) and thus is not amenable to this technique, whereas TPA4 is 

immobilized. A representative 2D spectrum of TPA4, acquired with a spin diffusion 

mixing time of 400 ms, is shown in Figure 5.4a. The cross peaks of interest are the lipid 

(CH2)n to the peptide Cα peaks. The sum of the 1H cross sections for the peptide Cα sites 

are shown in Figure 5.4b, along with a 1H direct polarization (DP) spectrum for 

comparison. After the cross peak intensities are corrected for 1H T1 relaxation and 

normalized by the equilibrium intensity of the CH2 peak relative to the water peak, we 

obtain the CH2-to-peptide buildup curve, shown in Figure 5.4c. The buildup curve rises 

slowly and reaches about 30% of the full equilibrium intensity by 400 ms. To compare 

this with previously measured cases, we superimpose the best-fit buildup curves of PG-1 

in the POPE/POPG membrane (dash-dotted line) and PG-1 in POPC/cholesterol 

membranes (dashed line) (30). The former represents the transmembrane case and the 

latter the surface-bound case, with distances of 2 Å and 25 Å, respectively, from the acyl 

chain ends (30). The TPA4 buildup curve falls between the two PG-1 limits, indicating 

that the peptide on average is inserted to the membrane-water interface, near the glycerol 

backbone and carboxyl groups of the bilayer. This approximate depth is similar to what 

we measured for wild-type TP-I in DMPC bilayers (25). Quantitative simulation of the 

TPA4 data gave a best-fit single distance of 5 Å from the lipid acyl chains; however, a 

low interfacial diffusion coefficient of 0.000125 nm2/ms had to be used to reproduce the 

shape of the curve. This suggests that the insertion depth of TPA4 is somewhat 

heterogeneous, with a dominant fraction at a distance longer than 5 Å from the chains and 

a small fraction in closer contact with the chains.  
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Figure 5.4. 13C-detected 1H spin diffusion spectra of TPA4 in the POPE/POPG membranes at 

298 K. (a) A representative 2D spectrum, measured with a mixing time of 400 ms. The peptide 

cross peaks to the lipid (CH2)n are indicated by a dashed line. (b) Sum of the peptide 1H cross 

sections at various mixing times, compared to the directly excited 1H spectrum (top). (c) The CH2 

buildup curve for TPA4 (filled symbols). Best fit (thick solid line) gives a distance of ~5 Å. The 

buildup curves for PG-1 in the POPE/POPG membrane (dash-dotted line) and PG-1 in the 

POPC/cholesterol membrane (dashed line) are shown for comparison (30). 

 

Dynamics of TP peptides in lipid bilayers  

 Since the depth of insertion of the inactive TPA4 does not differ from that of TP-

I, and the conformation of the active TPF4 and inactive TPA4 are also identical, the static 

conformation and topology of the three TP peptides do not correlate well with their 

antimicrobial activities. Thus, we turn to an investigation of the dynamics of the three 

peptides in the lipid membrane. 1H-13C CP efficiency is a robust measure of the dynamic 

properties of molecules. Spectral intensities obtained from CP are high for immobile 

proteins but low for molecules undergoing large-amplitude intermediate-timescale 

motion. If the protein reaches the fast motional limit at higher temperatures, then the CP 

intensities rise again. Figure 5.5 shows the CP spectra for the three tachyplesin peptides 

in the POPE/POPG membrane at 298 K (top row) and 273 K (middle row), above and 

below the phase transition temperature of 291 K for the POPE/POPG membrane. Both 

TP-I (a) and TPF4 (b) show much lower intensities at 298 K than at 273 K. This means 

that TP-I and TPF4 undergo anisotropic motion in the LC phase and the motion is partly 

frozen in the gel phase. In contrast, the TPA4 intensities (c) are little affected over this 
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temperature range, indicating that TPA4 is already rigid in the LC phase. Even at 273 K, 

the TP-I and TPF4 CP intensities are still lower than TPA4, indicating that they are still 

more mobile than TPA4. Since all three samples were prepared with the same P/L molar 

ratios of 1:15, and all peptides are highly soluble in water and bind to the anionic lipid 

bilayers with high affinity, the different dynamics results from intrinsic difference among 

the three peptides rather than sample preparation differences. Moreover, the immobile 

TPA4 is in molecular contact with the lipids, as shown by the 1H spin diffusion data 

above, thus it is not phase-separated from the membrane. A second TPA4 sample at a P/L 

ratio of 1:30 showed the same temperature-independent high CP intensities (supporting 

information Figure S5.2), confirming that TPA4 maintains its immobilization, which 

implies aggregation, even at the lower concentration.  

 

Table 5.1: 1H T1ρ relaxation times for the three tachyplesin peptides in POPE/POPG membranes 

at 298 K. Effective spin-lock fields were 68 kHz and 40 kHz. The ratio of the T1ρ values was used 

to calculate the motional correlation time τc as shown in ref. (31).  

 

Peptide Site 
T1ρ, 68 kHz 

(ms) 

T1ρ, 40 kHz 

(ms) 
τc (µs) 

TP-I V6α, 57.4 ppm 4.7 ± 0.2 2.3 3.5 

 G10α 0.39 ± 0.01   

TPF4 V6α 6.6 ± 0.3 3.3 3.5 

 G10α 4.6 ± 0.3 2.7 2.2 

TPA4 G10α 8.4 ± 0.3 4.7 2.5 

 I11α 9.1 ± 0.4 4.6 2.4 

 A12α 7.6 ± 0.2 4.4 2.3 

 

 A closer examination of the TP-I CP spectrum at 298 K shows two V6 13Cα 

peaks, a narrow peak at 57.9 ppm and a broad peak at 57.4 ppm. This is confirmed by the 
13C DP spectrum (bottom row), which shows a very narrow V6 Cα peak at 57.9 ppm. 
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The 13C T2 of this peak is very long, about 50 ms. Thus, a small population of TP-I 

molecules is nearly isotropically mobile in the membrane. This V6 heterogeneous 

dynamics may be the result of different interactions of TP-I with the POPE and POPG 

lipids.  

 

Figure 5.5. 13C cross polarization (CP) and direct polarization (DP) spectra of TP peptides in 

POPE/POPG membranes at 298 K and 273 K. (a) TP-I, (b) TPA4, (c) TPF4. Peptide resonances 

are highlighted in red. The spectra are plotted to keep the lipid glycerol and headgroup signal 

intensities roughly constant. The TP-I and TPF4 CP intensities are weak at 298 K and much 

stronger at 273 K. The TPA4 CP intensity is little affected by the temperature. 13C DP spectra 

(bottom) show a sharp TP-I V6α peak at 57.9 ppm. All spectra were measured under 5 kHz 

MAS.   

 

 To further characterize the dynamics of the three peptides in the lipid membrane, 

we measured the 1H rotating-frame spin-lattice relaxation times, T1ρ, which is sensitive to 

molecular motions on the microsecond timescale. We measured the 1H T1ρ using a 13C-

detected Lee-Goldburg spin-lock sequence with an effective spin-lock field of 68 kHz 

(31). Figure 5.6 compares the 1H T1ρ relaxation decay at 298 K of the G10 13Cα site in 
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the three peptides. TPA4 G10α shows the longest T1ρ of 8.4 ms while TP-I G10α has the 

shorter T1ρ of 0.39 ms, which is more than an order of magnitude shorter than TPA4. 

TPF4 G10α has an intermediate T1ρ of 4.6 ms (Table 5.1). Thus, TP-I and TPF4 exhibit 

extensive motion on the 10-5 s timescale at 298 K while TPA4 is much less mobile.  

 

 

Figure 5.6. 13C-detected 1H rotating-frame spin-lattice relaxation of G10α in TPA4 (open 

circles), TPF4 (open squares), and TP-I (filled squares) at 298 K. The relaxation decay constants 

are 8.4 ms, 4.6 ms, and 0.39 ms, respectively. A 1H spin-lock effective field of 68 kHz and a 

spinning speed of 5 kHz were used. A short 1H-13C LG-CP of 80 µs was used to ensure selectivity 

of the measured 1H T1ρ values.  

 

 Nuclear spin relaxation times depend both on the amplitude of motion, quantified 

by order parameters, and by the rates of motion on the relevant timescales. To determine 

whether it is primarily the amplitude or the rate that causes the different T1ρ relaxation 

times among the three tachyplesin peptides, we measured the 13C-1H and 15N-1H dipolar 

couplings of the labeled residues using the DIPSHIFT experiment. Reduction of the 

dipolar couplings from their rigid-limit values signify motion. To provide an accurate 

control for the order parameter calculation, we directly measured the rigid-limit couplings 

from crystalline model compounds under the same multiple-pulse irradiation condition as 

the membrane peptides. The C-H dipolar couplings are resolved by the 13C chemical 

shifts in the direct dimension of the 2D spectra. For the peptide backbone, TPA4 exhibits 

the strongest Cα-Hα dipolar couplings or largest C-H order parameters of 0.95-1.00 
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(Table 5.2), indicating that the motional amplitude is negligible. In contrast, the TPF4 

and TP-I backbones have lower Cα-Hα order parameters of 0.57 – 0.91 among the 

detectable sites, indicating medium- to large-amplitude motions. For SCH close to 1, one 

can calculate the root-mean-square (rms) amplitude of motion, θ2 , according to 

SCH ≈ 1− 3
2

θ2  without assuming a specific geometry of motion. The TPA4 backbone C-

H bond motional amplitude is less than 10˚ while TPF4 and TP-I Cα-Hα bonds have 

larger rms angles of greater than 14˚.  

To extract the N-H dipolar couplings of TPF4, we first assigned the 15N peaks 

from 13C-15N 2D correlation spectra. Figure 5.7a shows the TPF4 15N MAS spectra from 

298 K to 263 K. All four labeled sites, V6, F7, G10, and I11, are resolved at 298 K, with 

full-widths-half-maximum of 1.4 – 3.3 ppm except for the low peak at 118.4 ppm, which 

has a linewidth of 4.0 ppm. As the temperature decreases the 15N lines broaden, with a 

significant transition between 293 K and 283 K, across the phase transition temperature 

of the membrane. At 283 K, the peak at 118 ppm is no longer resolved in the 1D 

spectrum, suggesting intermediate timescale motion at this site (32). A 2D 15N-13C 

correlation spectrum at 283 K allowed the assignment of all four 15N peaks, with the 118 

ppm peak assigned to I11 (Figure 5.7b).  

The N-H dipolar DIPSHIFT curves of the four labeled sites in TPF4 at 298 K are 

shown in Figure 5.8. V6, F7, and G10 have N-H dipolar couplings of 8.5-9.6 kHz, 

corresponding to order parameters of 0.80-0.91 (Table 5.2), or rms angles of motion of 

14-21˚, while I11 has a much smaller order parameter of 0.30, indicating large-amplitude 

local motion.   
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Table 5.2: 13C-1H and 15N-1H dipolar couplings ωXH, order parameters SXH and rms motional 

amplitude θ2 1 2
of tachyplesin peptides in POPE/POPG membranes at 298 K.  

Peptide Site ωXH (kHz)a SXH
 b θ2 1 2

 

TP-I 

 

 

V6 Cα-Hα, 57.4 ppm 

V6 Cα-Hα, CP, 57.9 ppm 

V6 Cα-Hα, DP, 57.9 ppm 

20.2 

12.8 

3.0 

0.91 

0.57 

0.13 

14˚ 

Large 

Large 

TPF4 V6 Cα-Hα 18.1 0.81 20˚ 

 G10 Cα-Hα 18.0 0.81 20˚ 

 I11 Cα-Hα 17.0 0.76 23˚ 

 I11 Cβ-Hβ 11.7 0.52 Large 

 F12 Cα-Hα 17.0 0.76 23˚ 

 V6 N-H 8.5 0.80 21˚ 

 F7 N-H  9.6 0.91 14˚ 

 G10 N-H 8.5 0.80 21˚ 

 I11 N-H 3.2 0.30 Large 

TPA4 G10 Cα-Hα 22.3 1.00 0˚ 

 I11 Cα-Hα 21.3 0.95 10˚ 

 I11 Cβ-Hβ 13.8 0.62 29˚ 

 A12 Cα-Hα 22.3 1.00 0˚ 

 G10 N-H 10.6 1.00 0˚ 

 I11 N-H 9.6 0.91 14˚ 

 A12 N-H 10.6 1.00 0˚ 
a. The dipolar couplings reported are the true couplings obtained by dividing the measured values 

by the MREV-8 scaling factor (0.47) and the doubling factor where appropriate.  
b. A rigid-limit C-H coupling of 22.3 kHz and N-H coupling of 10.6 kHz were used to calculate 

the order parameters. 
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Figure 5.7. 15N spectra of V6, F7, G10, I11-labeled TPF4. (a) 1D 15N CP-MAS spectra as a 

function of temperature. Note the significant line broadening from 293 K to 283 K. (b) 2D 15N-
13C correlation spectrum at 283 K for 15N resonance assignment. All spectra were measured under 

5 kHz MAS. A 13C-15N REDOR period of 1.2 ms was used to transfer the 13C and 15N coherence. 

 

A similar N-H order parameter measurement was carried out on TPA4, whose 

data are shown in Figure 5.9. 2D 13C-15N correlation spectrum allowed the assignment of 

all three 15N-labeled sites, G10, I11, and A12. Consistent with the C-H dipolar coupling 

data, the N-H DIPSHIFT curves of TPA4 show near rigid-limit couplings, with order 

parameters of 0.91 and 1.00, which translate to small rms amplitudes of 0˚ and 14˚.  
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Figure 5.8. 15N-1H doubled DIPSHIFT curves of labeled sites in TPF4 at 298 K. (a) V6. (b) F7. 

(c) G10. (d) I11. The indicated couplings are the true values after taking into account the MREV-

8 scaling factor and dipolar doubling. The data were acquired under 3.472 kHz MAS.  

 

Therefore, the dipolar order parameters of the three tachyplesin peptides decrease 

in the order of TPA4, TPF4 and TP-I, which is the same as the trend of decreasing 1H T1ρ 

relaxation times from TPA4 to TP-I. This suggests that it is the nearly vanishing motional 

amplitudes, rather than slow motional rates, that give rise to the slow relaxation of TPA4. 

To verify this, we examined the 1H T1ρ as a function of temperature for the three peptides 

(Table S5.2, supporting information). Figure 5.10 shows the logarithmic plot of T1ρ as a 

function of inverse temperature. TPA4 exhibits the highest T1ρ values, as expected. 

Interestingly, most sites in all three peptides are on the fast side of the T1ρ minimum at 

298 K, indicating that their motional rates are similar and all slightly faster than the spin-

lock field strength of 68 kHz. However, this fast motion has little effect on TPA4 T1ρ 

relaxation due to its miniscule amplitude. Indeed, comparing the T1ρ values at spin-lock 

field strengths of 68 kHz and 40 kHz allowed us to extract the correlation times of motion 

for the three peptides using a previously established procedure (31), and the resulting 

correlation times all fall into a narrow range of 2.2 – 3.5 µs (Table 5.1). This confirms 
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that it is the amplitudes of motion, not rates, that distinguish the three tachyplesin 

peptides.  

 

 

Figure 5.10. 13C-detected 1H T1ρ relaxation times of the three tachyplesin peptides as a 

function of temperature. (a) TP-I. (b) TPF4. (c) TPA4. The temperature of 298 K is marked by a 

vertical dashed line and the T1ρ of 5 ms is marked by a horizontal line to guide the eye for the 

different positions of the T1ρ curves among the three peptides. The V6 in TP-I corresponds to the 

57.4 ppm peak in the CP spectrum, which is the most rigid component among the three V6 peaks 

detected (Table 5.2). 

 

Figure 5.10 also shows that the T1ρ minima are broad for most sites, suggesting 

the presence of a distribution of motional correlation times. The only exception to the fast 

motional rate at 298 K and the broadness of the T1ρ minimum is G10α in TP-I, the only 

β-turn residue among all sites examined. Its T1ρ minimum is much lower and sharper than 

the other sites, and at 298 K the motional rate is slower than the spin-lock field strength 

of 68 kHz. We are not able to turn the corner of the minimum to the fast side without 

risking overheating the sample (> 310 K). The particularly low T1ρ minimum of G10 

indicates large-amplitude motion, while the shifted temperature position of the minimum 

indicates slower rates of motion than the other sites examined.  

 

DISCUSSION 

Among the three tachyplesin peptides studied, the antimicrobial activities are 

similarly strong for TP-I and TPF4 and much weaker for TPA4 (3). Previously, we 

measured the static 31P spectra of oriented lipid membranes of several compositions in 
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the presence of TP-I, TPY4 and TPA4. TP-I does not cause membrane disorder in POPC, 

POPC/POPG, and POPC/cholesterol membranes, but induced a significant isotropic peak 

in the bacteria-mimetic POPE/POPG membranes, indicating the formation of micelles or 

small isotropic vesicles. In contrast, the 31P spectra of TPY4 and TPA4 showed a medium 

degree of orientational disorder without any isotropic signals in all membranes studied. 

Thus, the wild-type peptide and its linear derivatives differed in the specificity of the 

peptide-lipid interaction and the type of membrane disorder induced, but no correlation 

was found between membrane orientational disorder and antimicrobial activities. In this 

work, we address the question what molecular-level structural or dynamical parameters 

of the tachyplesin peptides account for their antimicrobial activities.  

 

 

Figure 5.9. 15N-1H doubled DIPSHIFT data of TPA4 at 298 K. (a) 13C-15N 2D correlation for 15N 

chemical shift assignment. (b-d) N-H DIPSHIFT slices of (b) G10, (c) I11, and (d) A12. The 

indicated couplings are the true values after dividing the fit values by the MREV-8 scaling factor 

and the dipolar doubling factor. The data were acquired under 3.472 kHz MAS.  

 

We first considered the peptide conformation in the lipid bilayer. In a previous 

study, we have measured 13C isotropic chemical shifts, torsion angles and internuclear 

distances to show that TP-I adopts a β-strand conformation at V6 and C7 but a β-turn 

conformation at G10 in lipid bilayers (25). This confirms solution NMR results that the 
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two disulfide bonds constrain TP-I conformation to be a regular β-hairpin in aqueous 

solution and in 60 mM DPC micelles (5, 26, 33). In comparison, the present 13C chemical 

shift and torsion angle data for TPF4 and TPA4 show that all residues examined adopt a 

β-strand conformation, with no sign of a β-turn at G10 (26, 33). Thus, in anionic 

POPE/POPG bilayers, the active TPF4 and much less active TPA4 both have a β-strand 

conformation, which is different from the active TP-I. Thus backbone structure does not 

account for the activity differences among the tachyplesin peptides. 

Circular dichroism data had previously shown that TPA4 is a random coil in 

water, 50% trifluoroethanol and mixed phosphocholine/phosphatidic acid liposomes (3). 

Solution NMR spectra indicated that this random coil conformation of TPA4 is preserved 

in 320 mM DPC solution as well (5). These results contrast with the current β-strand 

conformation of TPA4 found in POPE/POPG bilayers. On the other hand, FT-IR data 

showed that TP-Acm adopts an antiparallel β-sheet conformations in 

phosphatidylglycerol lipid films (9). Thus, anionic lipid membranes appear to promote β-

strand conformation in linear tachyplesin analogs.  

 We next measured the depth of insertion of TPA4 using 1H spin diffusion from 

the lipid chains. The experiment yielded a buildup curve intermediate between full 

insertion into the membrane center and surface binding, indicating that TPA4 binds at the 

membrane-water interface. This depth of insertion is similar to that of wild-type TP-I, 

which we have shown by 13C-31P distances and orientation experiments to lie at the 

glycerol backbone and carboxyl region of the membrane, roughly parallel to the plane of 

the bilayer (25, 34). Thus, the inactive TPA4 has the same membrane-binding topology 

as the active TP-I, excluding insertion depth as the cause for the different antimicrobial 

activities. In fact, so far partial insertion into the membrane-water interface has been 

found for all tachyplesin peptides, including TP-I, TP-Acm (9), and a cysteine-deleted 

mutant, CDT (6). Although we cannot measure the depth of insertion of TPF4 using the 
1H spin diffusion technique due to the dynamics of the peptide, the fact that the active 

TP-I shares the same topology as the inactive TPA4 is sufficient to exclude depth of 

insertion as the determining factor for antimicrobial activity.  
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Figure 5.11. Structural models of the three tachyplesin peptides. All peptides bind to the 

membrane-water interface. (a) TP-I has a β-hairpin conformation and undergoes global rotational 

diffusion around the membrane normal and large-amplitude segmental motion at the β-turn. 

These extensive motions suggest that TP-I has a low oligomeric number, which is represented 

here schematically by a mixture of monomers and dimers. (b) TPF4. The peptide conformation is 

mostly although not necessarily all β-strand. The peptide exhibits similar dynamics as TP-I with 

particularly large-amplitude motion at I11. (c) TPA4 has a β-strand conformation and is 

completely immobilized, suggesting large-size oligomers. A higher peptide concentration is 

required to inflict membrane damage.  

 

 Finally, we turned to an examination of the dynamics of the three peptides in the 

POPE/POPG membrane and found a surprisingly good correlation with the antimicrobial 

activity: in the liquid-crystalline phase of the membrane at 298 K, TPA4 is immobile 
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while TP-I and TPF4 undergo complex reorientational motions with significant 

amplitudes. This is clearly manifested in the temperature-dependent CP intensities, C-H 

and N-H dipolar order parameters, and 1H T1ρ relaxation times. The loss of CP spectral 

intensities is a classical sign of motion on the timescale of 1H decoupling fields and/or 
1H-13C cross polarization spin-lock field strengths, and has been used to assess motion in 

many proteins (35-38). The fact that cooling the samples to lower temperatures restored 

the CP intensity confirms the dynamic origin of the low intensities at higher temperature. 

The lack of this temperature dependence and the persistently high CP intensities of TPA4 

confirm its rigid nature in the LC phase of the membrane.  

The dynamics of TP-I and TPF4 show residue-specific differences and some 

heterogeneity among different molecules. For TP-I, three different V6 components are 

detected: a DP-detected peak at 57.9 ppm with a very long 13C T2 that suggests near 

isotropic motion, and two CP peaks at 57.9 ppm and 57.4 ppm with C-H order parameters 

of 0.57 and 0.91, respectively. This heterogeneity may result from differential binding of 

the peptide to POPE and POPG lipids. For G10, the strikingly short  1H T1ρ indicates 

large-amplitude motion of the β-turn on a timescale comparable to the spin-lock field 

strength of 68 kHz. In addition to these motions, we have previously observed reduced-

width uniaxial static lineshapes of 13CO and 15N-labeled sites in DLPC-bound TP-I (34), 

which indicate that TP-I undergoes global uniaxial rotation around the bilayer normal. 

Combining all these information, it appears that TP-I undergoes both whole-body 

rotational diffusion around the membrane normal and local segmental motion, with 

particularly large amplitude at the β-turn.  

TPF4 exhibits reduced order parameters of 0.76 – 0.91 for most backbone sites, 

which translate to root-mean-square angles of ~20˚. The exception is I11 N-H, which has 

more pronounced local motion, as manifested by its particularly low 15N CP intensity and 

its small N-H order parameter of 0.30. The T1ρ data indicate that the medium- to large-

amplitude motions of TPF4 have rates near the T1ρ minimum at 298 K, 2.2-3.5 µs. 

Finally, TPA4 contrasts with TP-I and TPF4 in that no measured backbone site has any 

significant amplitude. The motion at 298 K is thus likely very small-angle local torsional 

fluctuation, which is ineffective in causing relaxation.  



www.manaraa.com

 

 

83

Taken together, these NMR data indicate that the antimicrobial activities of the 

tachyplesin peptides are directly related to their mobilities in the lipid bilayer. While we 

do not know the full geometries of the motion in TP-I and TPF4, it is clear that both 

peptides have specific sites with large amplitudes of motion (G10 in TP-I and I11 in 

TPF4). In addition, global uniaxial rotation is present in TP-I. By analogy it might be 

present in TPF4 as well. What is also clear is that TPA4 has none of these motions. 

Therefore, we propose the following mechanistic model for the antimicrobial activity of 

the three peptides, illustrated in Figure 5.11. TP-I (a) and TPF4 (b) act by an “in-plane 

motion” model (39, 40) in which the peptides, parallel to the membrane plane and 

immersed at the membrane-water interface, exhibit significant segmental motion as well 

as global motion. A few residues in these two peptides have particularly large motional 

amplitudes, as indicated by arrows, and may shepherd the destructive action of the 

peptides toward the membrane. Effectively, TP-I and TPF4 behave like “stirring bars”, 

albeit soft ones, causing transient openings in the membrane and allowing passage of 

water molecules and ions, thus permeabilizing the membrane. The fact that TP-I is a β-

hairpin due to the disulfide bonds whereas TPF4 is mostly a β-strand does not seem to 

change the dynamics significantly. The presence of extensive motion suggests that both 

peptides form at most small oligomers. In contrast, the β-strand TPA4 is completely 

immobilized at the membrane-water interface. The lack of mobility is a strong indication 

of extensive aggregation, probably through the formation of intermolecular hydrogen 

bonds.  

Our conclusion of TPA4 is remarkably similar to the model proposed for TP-Acm 

based on translocation and calcein leakage assays, FT-IR and light scattering experiments 

(9, 10). TP-Acm does not form pores and does not translocate across the membrane; 

instead, it aggregates on the membrane surface, forming interchain hydrogen-bonded β-

sheets, in so doing destabilizing the bilayer organization and morphology (10). The 1H 

spin diffusion data and the dynamics data shown here indicate that TPA4 aggregates and 

resides on the membrane surface in a similar manner to TP-Acm. The remaining 

antimicrobial activity of TPA4 may be mediated through the “carpet” mechanism, whose 

essential features are an in-plane peptide orientation at the early stage, significant 
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aggregation, and eventual micellization of the membrane (41, 42). The fact that TPA4 is 

much less potent than TP-I and TPF4 implies that this static aggregation-based carpet 

mechanism is less effective than the dynamic in-plane motion mechanism, because a 

higher peptide concentration is required. In other words, a mobile in-plane peptide 

damages the membrane more effectively than a static in-plane peptide.  

The extensive dynamics of TP-I detected here is also consistent with the findings 

of Matsuzaki and coworkers. Based on electrophysiological experiments, fluorescence 

quenching, and calcein leakage data, they found that TP-I permeabilizes the lipid 

membrane by forming transient anion-selective pores (9, 10). The peptide, initially bound 

to the outer membrane-water interface, translocates across the lipid bilayer. The 

molecular motion observed here provides a basis for the translocation and pore 

formation.  

Interestingly, an analogous horseshoe crab antimicrobial peptide, polyphemusin, 

does not appear to use the same mechanism of action: it does not cause calcein leakage in 

POPC/POPG large unilamellar vesicles (43), and causes negative curvature strain (44). 

Both are opposite to the behavior of TP-I (10). Thus, the motional model may not apply 

to polyphemusin. It would be interesting to determine how small sequence changes cause 

differences in the behavior of these similar peptides.  

The mechanism of action and structure of TP-I are also in stark contrast with 

those of PG-1, another cationic β-hairpin antimicrobial peptide that we have studied 

extensively by NMR (13, 14). PG-1 is transmembrane in most lipid membranes 

examined, including DLPC (15, 45), POPC (46), and POPE/POPG (30) membranes. It is 

immobilized and oligomerized into β-barrels in POPE/POPG membranes (30, 47). Thus, 

PG-1 exerts its membrane-disruptive action by forming long-lasting pores (48-50). In 

contrast, TP-I is surface-bound and does not form permanent pores (10), and causes 

membrane permeabilization by in-plane motion.  

This mobility mechanism of membrane disruption may also be operative for other 

antimicrobial peptides. For example, the α-helical antimicrobial peptides PGLa (51, 52) 

and ovispirin (53) exhibit in-plane orientation and undergo fast uniaxial rotation around 
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the bilayer normal. This rotation is manifested by the motionally narrowed spectra of the 

peptides in bilayers oriented with the alignment axis perpendicular to the magnetic field.  

The reason that TPF4 does not form immobile aggregates like TPA4 is unclear at 

this point. One possibility is that TPF4 may have non-β-sheet conformation at residues 

other than the ones examined here. A previous solution NMR study of TPY4 showed that 

in water TPY4 retains the β-hairpin fold, despite the lack of disulfide bonds, due to 

aromatic ring stacking interactions (5). Thus, it is possible that residual β-hairpin 

conformation may exist at other sites in TPF4 that reduces its propensity to form large 

aggregates. If this is true, then it would strengthen the hypothesis that it is the three-

dimensional fold of the peptide in the membrane rather than the disulfide bonds 

themselves that is required for antimicrobial activity. Function-retaining alterations of 

disulfide patterns have also been observed in defensins, which are larger β-sheet analogs 

of TP-I (54).  

In conclusion, we find that TP-I and TPF4 derive their antimicrobial activity from 

extensive motion in the plane of the lipid membrane, while TPA4 activity is significantly 

weakened by the fact that it is immobilized, probably due to aggregation. The β-hairpin 

conformation may be important for keeping the peptide from aggregating and thus 

maintaining the membrane-disruptive motion.  
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Supporting Information 

Table S5.1. Isotropic chemical shifts and secondary shifts (ppm) of 13C- and 15N-labeled sites in 

TPA4, TPF4 and TP-I.  

Residue Site 

TPA4 TPF4 TP-I 

δiso  ∆δiso  δiso  ∆δiso  δiso  ∆δiso  

V6 Cα   58.1 -2.3 57.4/57.9 -3.0/-2.5 

 Cβ   33.1 2.1   

 N   124.9    

A/F7 N    128.9    

G10 CO 169.7 -2.5 168.8 -3.4   

 Cα 44.4 0.5 43.6 -0.21 43.0 -0.8 

 N 111.5  113.8    

I11 CO 173.6 -0.3 171.8 -2.1   

 Cα 56.8 -2.6 56.9 -2.4   

 Cβ 42.7 5.7 41.2 4.3   

 N 113.5  118.4    

A/F12 CO 173.4 -2.6 172.0 -1.9   

 Cα 50.0 -1.1 54.1 -2.2   

 Cβ 21.3 3.9 40.2 2.5   

 N 125.2      
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Table S5.2: 1H T1ρ values (ms) for various residues in TP-I, TPA4 and TPF4 bound to 

POPE/POPG membranes as a function of temperature.  Not all samples were measured at all 

temperatures. Entry n.r. indicates that the resonance was not resolved. 1H T1ρ was measured under 

an effective spin-lock field strength of 68.0 kHz. 

Temp 

(K) 

TP-I TPF4 TPA4 

V6 G10 V6 G10 G10 I11 A12 

310  0.3       

308 4.3        

303  0.3       

298 4.7 0.4 6.6 4.6 8.4 7.6 9.1 

283 4.0 1.1 5.5 3.6    

273 3.8  4.8 3.1 n. r. 5.9 5.8 

263 4.1 2.4 4.6 3.1 n. r. 4.4 5.2 

253    7.1 5.5 n. r. 4.5 5.7 

243 4.8  8.2 7.2 n.r. 6.6 8.3 

 

 

 

Figure S5.1. φ torsion angle of V6 in TPF4 from the HNCH experiment. (a) HNCH data, 

acquired under 3.472 kHz MAS at 233 K. (b) RMSD between the simulations and the 

experimental data. The best-fit φH angle is ±160˚, which corresponds to a φ angle of –140˚ or –

100˚, both in the β-strand region of the Ramachandran diagram.  
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Figure S5.2. Comparison of 13C CP-MAS spectra of TPA4 in POPE/POPG membranes at two 

peptide concentrations. (a) P/L=1:15. The spectra are the same as in Figure 5.5c, but scaled so 

that the lipid CH2 peak is fully shown and its intensity is set to be the same in all spectra to serve 

as a reference to the peptide signal intensities. The TPA4 CP intensities (red) are unchanged 

between 298 K and 273 K, indicating the absence of motion at ambient temperature. (b) 

P/L=1:30. The peptide signal intensity is roughly half of those in (a), as expected for the half 

reduced concentration. The peptide CP intensities also remain unaffected by temperature. Thus, 

TPA4 is immobilized at 298 K even at the lower concentration. All spectra were measured under 

5 kHz MAS.  
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Chapter 6 

Orientation Determination of Membrane-Disruptive Proteins Using 

Powder Samples and Rotational Diffusion: A Simple Solid-State NMR 

Approach 

Published in Chem. Phys. Lett. 

2006, 432, 296-300 

Mei Hong and Tim Doherty 

 

Abstract  

 The orientation of membrane proteins undergoing fast uniaxial rotation around the 

bilayer normal can be determined without macroscopic alignment. We show that the 

motionally averaged powder spectra exhibit their 0˚ frequency, δ//, at the same position 

as the peak of an aligned sample with the alignment axis parallel to the magnetic field. 

This equivalence is exploited to determine the orientation of a β-sheet antimicrobial 

peptide not amenable to macroscopic alignment, using 13CO and 15N chemical shifts from 

powder spectra. This powder sample approach permits orientation determination of 

naturally membrane-disruptive proteins in diverse environments and under magic-angle 

spinning.  

 

Introduction 

 The orientation of membrane proteins has been traditionally determined in solid-

state NMR by means of macroscopically aligned samples (1). When the membrane is 

uniaxially aligned so that the bilayer normal is parallel to the magnetic field (B0), the 

NMR spectrum of a single site collapses into a single line at a frequency that reflects the 

orientation of the protein with respect to the bilayer normal.  

 However, aligning lipid membranes mechanically on glass plates or magnetically 

in bicelles is generally difficult. Many proteins cannot be aligned due to their inherent 

membrane-disruptive or curvature-inducing nature (2). Usually only certain membranes 

are amenable to alignment for a specific protein. Alignment becomes more difficult as the 

protein size and concentration increase. For glass-plate samples, it is often difficult to 
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control pH, ion concentration, or other parameters that may be relevant for the function of 

the membrane protein.  

 Therefore, it is desirable to determine membrane protein orientation without using 

macroscopic alignment. In fact, it has been realized that for molecules undergoing fast 

uniaxial rotational diffusion around the bilayer normal, orientation information can be 

obtained from unoriented samples (3, 4). Uniaxial mobility is present for membrane 

proteins in liquid-crystalline bilayers as long as the protein is not too large (5), and has 

been reported for many membrane peptides and proteins such as gramicidin A (6), 

protegrin-1 (7), KL14 and hΦ19W (8). Here we show a simple way of deriving the 

equivalence between aligned and powder samples, and apply this principle to β-sheet 

membrane peptides, which are less well understood than α-helices. 13CO and 15N 

chemical shift constraints obtained from powder samples are used to determine the 

orientation of a β-sheet antimicrobial peptide that has been resistant to macroscopic 

alignment.  

 

Materials and Methods 

 Protegrin-1 (PG-1) and tachyplesin-I were synthesized by Fmoc solid-phase 

methods as described before (7, 9). Unoriented proteoliposome samples were prepared by 

codissolving the peptide and lipids in chloroform and TFE, lyophilization, and 

rehydration to 35% water by mass. Aligned samples were prepared as described before 

(7): the codissolved peptide and lipid organic solution was spread evenly on ~80 µm 

thick glass plates. The sample was vacuum dried thoroughly, and rehydrated at >95% 

humidity over a saturated salt solution for several days. The plates were stacked, wrapped 

in parafilm and sealed for measurements.  

All spectra were acquired on a Bruker DSX-400 spectrometer (9.4 Tesla) using a 

static probe. For aligned samples, a home-built rectangular radiofrequency (rf) coil was 

used, while unoriented samples were measured in a 5-mm solenoid coil. Typical 1H 

decoupling field strengths and CP field strengths were 50 kHz.  
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Figure 6.1. Schematics showing the equivalence between the 0˚-aligned spectra and unoriented 

spectra. (a) Rigid 0˚-aligned sample. (b, c) Mobile aligned sample. In (c), the motionally averaged 

tensor has the unique axis along the bilayer normal. (d) Mobile unoriented sample.  

 

Results and Discussion 

We first derive the equivalence between the frequency of an immobile and 

uniaxially aligned sample with the alignment axis parallel to the magnetic field B0 (0˚-

aligned samples), and the 0˚ frequency, δ //, of a mobile unoriented sample. The 

frequency of an immobile 0˚-aligned sample depends on the polar (θ) and azimuthal (φ) 

angles of B0 in the principal axis system (PAS) of the relevant interaction tensor (Figure 

6.1a):  

 

  ω0Þ aligned= 1
2

δ 3cos2 θ −1− ηsin2 θcos2φ( )+ ωiso. (6.1) 

 

Here δ and η are the anisotropy and asymmetry parameters, respectively, of the rigid-

limit interaction tensor. Since B0 is parallel to the alignment axis, θ, φ( ) are also the polar 

coordinates of the bilayer normal in the PAS.  
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 Uniaxial rotation around the bilayer normal in the 0˚-aligned sample does not 

change the frequency, since this rotation is also around the magnetic field and thus does 

not change θ, φ( ) (Figure 6.1b). Thus, eq. (6.1) also applies to mobile oriented samples.  

 For a mobile but unoriented sample, the motional axis is generally not parallel to 

B0, thus the NMR spectra depend on the anisotropy parameter, δ , of the motionally 

averaged tensor (Figure 6.1d). Since δ  is the frequency difference from the isotropic 

frequency observed when B0 is along the unique axis of the averaged tensor, which is the 

motional axis (Figure 6.1c),  

 

  δ = ω0Þ aligned− ωiso = 1
2

δ 3cos2 θ−1− ηsin2 θcos2φ( ).  (6.2) 

 

This averaged anisotropy parameter, together with the averaged asymmetry parameter η  

of 0, completely determine the powder lineshape of the protein. The 0˚-edge of this 

powder pattern, which results from bilayer normals parallel to the magnetic field, appears 

at  

 

  δ// = δ + ωiso = ω0Þ aligned.  (6.3)  

 

In other words, the δ// edge of the motionally averaged powder spectrum is identical to 

the frequency of the 0˚-aligned sample. Thus, one can determine the orientation of 

membrane proteins using powder samples provided the protein undergoes uniaxial 

rotation faster than the interaction strength. Moreover, in the static spectra, one can 

determine δ// from the high-intensity 90˚ peak, δ⊥, since the two are related by:  

 

  δ⊥ − ωiso = − 1
2

δ = − 1
2

δ// − ωiso( ) (6.4) 

 

 Figure 6.2 shows calculated motionally averaged 13CO and 15N powder spectra for 

several orientations of an ideal β-sheet peptide. The peptide was constructed with torsion 

angles φ,ψ,ω( ) of (-139˚, +135˚, +178˚), and exhibits little twist for the short length 
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considered. Thus a single 13CO and 15N label was used to represent the overall 

orientation. The 13CO and 15N chemical shifts were calculated as a function of the polar 

coordinates of B0 in a molecule-fixed frame defined by the β-strand axis and β-sheet 

plane. For the 13CO tensor, rigid-limit principal values of (248, 170, 100) ppm were used 

in the calculation, the σ22 axis is parallel to the C=O bond, and the σ33 axis is 

perpendicular to the peptide plane (10). For the 15N tensor, the principal values are (217, 

77, 64) ppm, the σ11 axis is 17˚ from the N-H bond, and the σ33 axis is 25˚ from the 

peptide plane (11). Four orientations, defined by the tilt angle (τ) of the β-strand axis 

from the bilayer normal and the rotation angle (ρ) of the β-sheet plane around the strand 

axis, were considered. Figure 6.2 shows that the motionally averaged 13CO and 15N 

powder spectra are exquisitely sensitive to the β-sheet orientation. For example, when the 

β-strand axis is perpendicular to the bilayer normal but the β-sheet plane is parallel to it 

(τ = 90˚ and ρ = 0˚), the 15N powder spectrum has nearly rigid-limit CSA while the 13CO 

spectrum is extremely narrow (Figure 6.2a, e). These result from the fact that the 15N σ11 

axis and the 13CO σ22 axis are parallel to the bilayer normal at this orientation. When the 

β-sheet lies in the plane of the bilayer (τ = 90˚ and ρ = 90˚), the 15N CSA is reduced to 

half the rigid-limit value and inverted in sign (Figure 6.2f), while the 13CO spectrum has 

the δ// edge close to σ33 (Figure 6.2b). For all orientations, the 0˚-aligned spectrum shows 

the same frequency as the δ// edge of the powder pattern.  

An example of the equivalence between the powder spectra and the oriented 

spectra for uniaxially mobile molecules is given by PG-1, a β-sheet membrane peptide 

(12). Figure 6.3 shows the 13CO spectra of Val16 
13CO-labeled PG-1. The 0˚-aligned 

spectrum of PG-1 (a) exhibits a 13CO chemical shift of 216 ppm (7). The unoriented 

sample gives an axially symmetric powder pattern with δ// = 216 ppm and δ⊥  = 151 ppm 

(b), much narrower than the rigid-limit CO lineshape (Figure 6.4f). The powder pattern, 

obtained with 1H-13C CP, exhibits a sharp lipid signal at ~173 ppm. After subtracting the 

lipid background signal using a single-pulse 13C spectrum, the difference spectrum of the 

peptide shows a “magic-angle hole” at the isotropic shift (c). This is characteristic of the 

CP spectra of uniaxially mobile molecules, where the chemical shift and the dipolar 
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coupling tensors are collinear with the motional axis. When the bilayer normal is 54.7˚ 

from B0, the averaged 13C CSA and the 1H-13C dipolar coupling both vanish, thus 

abolishing CP at the isotropic shift. The δ⊥  singularity of the powder spectrum is 

identical to the frequency of the 90˚-aligned spectrum (d) obtained by tilting the glass 

plates to make the alignment axis perpendicular to B0. The δ// (216 ppm), isotropic shift 

(173 ppm), and δ⊥  frequencies (151 ppm) are related by eq. (6.4) as expected for 

uniaxial tensors.  
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Figure 6.2. Calculated 13CO (a-d) and 15N (e-h) powder spectra (solid lines) and 0˚-aligned 

spectra (dotted lines) of a uniaxially mobile β-sheet peptide for various orientations. (a, e) τ = 

90˚, ρ = 0˚. (b, f) τ = 90˚, ρ = 90˚. (c, g) τ = 45˚, ρ = 0˚. (d, h) τ = 0˚, ρ = 0˚. Note the identity 

between the frequency of the 0˚-aligned spectra and the δ// position of the powder spectra.  

 

 This motionally endowed favorable frequency equivalence has been exploited 

indirectly in bicelle-bound membrane proteins (13). When bicelles are aligned 
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magnetically with the alignment axis perpendicular to B0, the fast uniaxial rotation of the 

protein-bicelle complex yields well-resolved 15N spectra whose δ⊥  frequencies are 

related to the δ// frequencies of the 0˚-aligned glass-plate samples according to eq. (6.4). 

We generalize this frequency equivalence to any orientation of the membrane, thus it is 

not necessary even to prepare bicelles.  

 It is important to note that the rotational diffusion of membrane proteins differs 

from that of lipids: most proteins are internally rigid, while the conformational flexibility 

of lipid molecules prohibits orientation determination even in the presence of global 

rotational diffusion (14).  

100150200250
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(b)

(c)

(d)

lipid

lipid

lipid *
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Figure 6.3. 13CO spectra of Val16-labeled PG-1 in DLPC membrane. (a) 0˚-aligned spectrum 

from ref. (7). (b) Powder spectrum obtained with CP. (c) Difference spectrum after subtracting 

the lipid background signal, showing only the peptide signal. (d) Spectrum of a 90˚-aligned 

sample from ref. (7). The peptide signals in (a) and (d) are indicated by an asterisk.  

 

 We use this powder sample approach to determine the orientation of a β-sheet 

membrane peptide that has not been amenable to macroscopic alignment so far. 
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Tachyplesin-I is a disulfide-linked β-hairpin antimicrobial peptide found in the 

hemocytes of the horseshoe crab, Tachyplesus tridentatus (15). Figure 6.4 shows the 

static 15N (a, b) and 13CO spectra (d, e) of 15N-Phe4 and 13CO-Val6 labeled TP-I in 

unoriented DLPC membrane. In the Lα-phase (a), the 15N spectrum shows a uniaxial 

lineshape, reduced anisotropy (δ// = 195 ppm), and a magic-angle hole, indicating that 

TP-I undergoes fast uniaxial rotation. Cooling the peptide to below the phase-transition 

temperature returned the rigid-limit 15N CSA (b, c). The 13CO spectrum at 303 K after 

subtracting the lipid background signal also shows a uniaxial lineshape, δ⊥ = 160 ppm 

and δ// = 205 ppm. The broadness of the δ// edge results from insufficient 1H decoupling 

on the hydrated membrane sample. But the well-defined δ⊥ singularity and eq. (6.4) still 

yield the 0˚ frequency to ± 5 ppm.  
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Figure 6.4. 15N (a, b) and 13CO (d, e) static powder spectra of 15N-Phe4 and 13CO-Val6 labeled 

TP-I in DLPC membrane (1:15 molar ratio). 15N spectrum at 303 K (a) and 243 K (b) differ in the 

CSA. (c) Simulated rigid-limit 15N powder pattern. (d) 13CO spectrum of the peptide and the 

lipids at 303 K. (e) 13CO spectrum of the peptide after subtracting the lipid background signal. (f) 

Simulated rigid-limit 13CO spectrum.  
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Figure 6.5. TP-I orientation from 15N and 13CO chemical shifts. (a) Phe4 
15N chemical shift as a 

function of θ, φ( ) of the bilayer normal in the molecule-fixed PDB system. (b) Val6 
13CO 

chemical shift as a function of θ, φ( ). The measured chemical shifts with the associated 

uncertainty are colored. (c) The 13CO and 15N chemical shifts overlap at θ, φ( ) = (78˚, 155˚). (d) 

TP-I orientation with the bilayer normal in the vertical direction. The peptide and DLPC bilayers 

are drawn to scale. 

 

 To determine TP-I orientation, we calculate the δ// chemical shifts as a function of 

θ, φ( ) of B0 in the molecule-fixed PDB coordinate system (7). Our recent study of the TP-

I conformation indicates that the two strands of the hairpin adopt ideal β-sheet 

conformation (9) similar to its solution NMR structure in 60 mM DPC micelles (16). The 
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15N-Phe4 and 13CO-Val6 chemical shift surfaces calculated with this conformation are 

shown in Figure 6.5(a, b). The two experimental shifts overlap at a single position, 

θ, φ( )= (78˚, 155˚), in the entire orientational space (c). This results in a β-hairpin that is 

tilted by ~20˚ from the membrane plane (Figure 6.5d). The overall in-plane orientation is 

consistent with 13C-31P distance measurements indicating that Val6 in the N-terminal 

strand and Gly10 at the β-turn are equidistant from the phosphate headgroups, and 1H spin 

diffusion data indicating that the peptide is not close to the lipid acyl chains of the 

membrane (9).  

 

Conclusion  

 We have shown by simulation and experiments that in the presence of fast 

uniaxial rotation, membrane protein orientation can be determined by using unoriented 

proteoliposomes. Using this approach, we found that the β-hairpin antimicrobial peptide 

TP-I is oriented roughly parallel to the plane of the DLPC bilayers.  

The use of powder samples for orientation determination opens up many 

spectroscopic and biological possibilities inaccessible to macroscopically aligned 

samples. This is the only method for determining the orientation of un-alignable proteins 

such as curvature-inducing antimicrobial peptides. The removal of glass plates or the 

need for dilute bicelle solutions increases the sample amount in the rf coil, thus 

increasing sensitivity. The ease of preparing unoriented proteoliposomes allows direct 

studies of membrane protein orientation as a function of external parameters such as pH 

and membrane composition. Finally, with powder samples, one can access the large 

repertoire of magic-angle spinning (MAS) techniques for site-resolved orientation 

determination. For example, N-H dipolar couplings can be measured by 2D MAS 

experiments to determine helix orientation, as we will show elsewhere (17).  
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Chapter 7 

Orientation and Depth of Insertion of the S4 Voltage-Sensing Domain of 

the Potassium Channel KvAP in Lipid Bilayers from Solid-State NMR 

 

Tim Doherty and Mei Hong 

 

Abstract  

 The orientation and topology of the isolated S4 segment from the voltage gated 

potassium sensor KvAP is determined. The tilt angle was found to be 40 ± 5° with a 

rotation angle of 280 ± 20°. This transmembrane orientation rather than an surface bound 

orientation is expected based upon the weakly amphipathic nature of the sequence. The 

peptide was also found to cause membrane thinning of ~9Å, which is considered to be a 

result of the membrane accommodating the charged arginine sidechains evenly spaced 

throughout the otherwise very hydrophobic helix. 

 

Introduction 

 Voltage gated potassium channels are important for signaling in neurons and 

other excitable cells (1, 2). There currently is an argument over what conformational 

changes the potassium channel undergoes during gating in response to a change in 

membrane potential. It is clear that the S4 helix which has conserved positively charged 

residues evenly spaced every 3rd residue is important in this process, as mutations of the 

charged residues to uncharged residues destroys the activity of the pore (3, 4). A major 

question that remains because of the lack of a crystal structure of the closed state is how 

the charged residues on this helix interact with the low dielectric bilayer (5-9). Current 

models have the some of the charged residues on the voltage sensor being protected by 

negatively charged glutamate and aspartate residues in the S1 and S2 domains of the 

sensor while others interact with the negatively charged lipid phosphate (9). The 

interaction between the lipids and the positively charged sidechains in the voltage sensing 

domain (10) and the isolated S4 helix (11) has been the focus of MD simulations that 
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have shown the stable transmembrane alignment of these peptides by thinning of the 

bilayer, water penetration into the bilayer, and local disruption of the lipid organization. 

Here we look at the orientation and topology of the isolated S4 domain with respect to the 

lipid membrane and determine a transmembrane α-helix that causes membrane thinning 

of ~9 Å. The transmembrane orientation is expected from the highly hydrophobic nature 

of the peptide and the peptides ability to translocate across the membrane (12), while 

thinning of the membrane likely takes place to reduce the thermodynamic penalty of 

including the charged arginine sidechains in the low dielectric bilayer core. 

 

Materials and Methods 

Peptide and lipids 
13C and 15N labeled amino acids were purchased from Sigma-Aldrich 

(Miamisburg, OH) and Cambridge Isotope Laboratory (Andover, MA) and converted to 

Fmoc derivatives in house. The peptide (LGLFRLVRLLRFLRILLI) which correspond to 

residues 113-130 of the S4 helix in the voltaged gated potassium channel KvAP was 

synthesized and purified by Primm Biotec (Cambridge, MA) with various uniformly 13C 

and 15N labeled residues. All lipids were obtained from Avanti Polar Lipids (Alabaster, 

AL) and used without further purification.  

 

MAS membrane samples 

Peptide containing membrane samples were prepared in one of two ways: mixing 

in organic solvents or by aqueous preparation using a detergent. The samples made by 

organic mixing were prepared by first weighing out the peptide and lipid and then 

dissolving them in a 3:1 mixture of CHCl3:Methanol. This was then blown dry under a 

stream of N2, brought back up in cyclohexane and freeze dried. The lipid/peptide mixture 

was then packed into a rotor and hydrated to 35% water with 10 mM phosphate buffer at 

pH=7.0. 

Samples prepared by the aqueous method (13) were made by first mixing lipids in 

chloroform then drying these lipids down with a stream of N2. The well mixed lipids 

were re-dissolved in cyclohexane and freeze dried overnight, then dissolved in 10 mM 
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phosphate buffer (Na2HPO4/NaH2PO4/1mM EDTA, pH=7.0) and freeze thawed five 

times. Next, the KvAP peptide was dissolved in 2 mL of 30 mg/mL octyl-β-glucoside 

(O.G.). These two clear solutions were mixed then the detergent was removed by dialysis 

against 10 mM phosphate buffer for 3 days at room temperature. This peptide-lipid 

solution was then centrifuged for 3 hours at 150,000 x g to yield a wet pellet. The 

supernatant was removed and the wet pellet was freeze thawed, packed into a rotor and 

then rehydrated to 35% with buffer.  

 

Oriented bicelle samples 

DMPC/6-O-PC bicelle samples were prepared from the procedure outlined by De 

Angelis et al. (14) with modifications adopted from other studies (15-18). First, the 

appropriate amount of each lipid was weighed out, then enough 25 mM HEPES buffer 

(pH=7.0) was added to make a 65% water (v/w) mixture. This mixture was cooled to 0° 

C and warmed to 42° C three times and then allowed to sit overnight at 4° C. The next 

day the mixture was homogenous and exhibit high viscosity at 42° C and low viscosity at 

0° C. This solution was then put into a 4 mm rotor and checked for alignment by static 
31P NMR. 2.5 mg of the KvAP peptide was weighed out and 75 µL of bicelle solution 

was added to this. The peptide containing bicelle mixture was then heated and cooled 

several times and allowed to sit at 4° C overnight. In the morning the solution was 

homogenous, it was then transferred to a 4mm MAS rotor. The alignment was checked 

by 31P NMR again before running PISA experiments. 

 

Solid-State NMR experiments 

MAS experiments were carried out on a Bruker DSX-400 (9.4 T) spectrometer 

(Karlsruhe, Germany) operating at Larmor frequencies of 400.49 MHz for 1H, 100.70 

MHz for 13C. A MAS probe equipped with a 4 mm spinner was used for all MAS 

experiments, and low temperature experiments were conducted using air cooled by a 

Kinetics Thermal Systems XR air-jet sample cooler (FTS Systems, Stone Ridge, New 

York). 1H-13C cross polarization (CP) was carried out at a spin-lock field strength of 50 

kHz for 0.5 ms. 13C chemical shifts were externally referenced to the α-Glycine 13C CO 
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resonance at 176.49 ppm on the TMS scale. J-decoupled REDOR (19, 20) was used to 

measure peptide 13Cα to lipid 31P distances at 233 K. A gaussian-shaped 0.8 ms 180° 

pulse on the carbon channel is used to recouple the 31P-13C dipolar coupling while 

removing the 13C-13C J-coupling present in the uniformly labeled residues. Two 

experiments are run, a control experiment S0 with no 31P recoupling pulses and S with 31P 

recoupling pulses. The normalized intensities (S/S0) are plotted as a function of 

recoupling time to determine the dipolar coupling between spins. Data is fit with decay 

curves generated by an in-house Fortran program. The rate of decay depends on the 

dipolar coupling strength and therfore the distance between spins.   

Static oriented membrane experiments were carried out on a Bruker ADVANCE-

600 (14.1 T) spectrometer (Karlsruhe, Germany). A triple-resonance static probe with a 

round coil oriented at 90° from B0 was used for all 31P and 1H-15N experiments. 15N 

chemical shifts were externally referenced to the 15N resonance of N-acetylvaline at 122 

ppm on the NH3 scale, and 31P chemical shifts were referenced to 85% H3PO4 at 0 ppm. 

Temperatures for bicelle experiments depended on at what temperature alignment was 

achieved and varied from 302-310 K. A separate local field experiment was used to 

correlate 1H dipolar coupling with 15N anisotropic chemical shift. After magnetization is 

transferred to nitrogen by 1H-15N CP, 15N-1H dipolar coupling is allowed to evolve while 
1H-1H dipolar coupling is suppressed by FLSG homonuclear dipolar decoupling (21). 

Then the 15N chemical shift and 15N-13C dipolar coupling are refocused by a 180° pulse 

and then the 15N signal is detected. 1H-15N cross polarization (CP) for the peptide-

containing sample was carried out at a spin-lock field strength of 50 kHz for 0.7 ms. 

FSLG homonuclear decoupling was applied during t1 at a transverse rf field of 50 kHz. 

The scaling factor for FSLG was empirically determined to be 0.54 on N-acetylvaline. 

During t2 5 kHz CW decoupling is applied to the 13C channel to remove 1 bond 15N-13C 

dipolar coupling which has a maximum strength of ~1 kHz. Acquisition time for t2 was 

5.2 ms while acquisition time in t1 was 1.8 ms. Typical 90° pulse lengths were 6 µs for 
15N and 5 µs for 1H. 

RMSD between simulated points in the PISA wheels and experimental data was 

calculated with equation 7.1 (22): 
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Where the normalization factors are: 

 ( )( ) ( ) ( ) kHz 2.1654.08.05.0 MaxOBS,
NHFSLGSBicelle

Rigid
NH

OBS
NH ==−= δδδ  [7.2] 

and 

 δCSA
OBS = δCSA

Rigid −δiso( )−0.5( )Bicelle
0.8( )S( )+ δiso = δCSA

OBS,max= 61.2 ppm   [7.3] 

 

Results 

Secondary structure of KvAP S4 helix  

To ensure that the S4 domain retains its helical structure when isolated from the 

rest of the KvAP protein, isotropic 13C chemical shifts of five labeled residues were 

measured. Two peptide samples with different labeling schemes were prepared, one 

containing U-13C, 15N labeled sites G2, L6, I15 and another containing U-13C, 15N V7, 

L9. These residues were selected for labeling to allow clear isotropic chemical shift 

resolution in MAS experiments, as well good resolution in the static 1H-15N experiments 

since they are ~180° apart in the helical wheel. Chemical shifts were determined with 

either 2D 13C-13C correlation which uses 2D to ease assignment or 1D double quantum 

filtered experiments which remove resonances belonging to the unlabeled lipids. A 

representative 13C-13C correlation spectrum for G2, L6, I15 is shown in Figure 7.1a. All 

sites are well resolved and assignment is included on the spectra, while chemical shifts 

for all backbone sites are tabulated in table S7.1. The isotropic chemical shifts are 

compared to the random chemical shifts (23) as a qualitative determination of  the 

secondary structure. Figure 7.1b and table S7.1 show the secondary shift values where it 

can be seen that all residues but G2 give secondary shifts that are positive for CO and Cα 

and negative for Cβ which is strong evidence of the expected α-helix. The G2 secondary 

shifts suggest that the N-terminus of the peptide is unordered. Since residues L6, V7, L9, 

and I15 are α-helical they are included in the data interpretation of the 2D 

dipolar/chemical shift correlation data.  
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Figure 7.1. Confirmation of secondary structure of the KvAP S4 helix by chemical shifts. 

Representative carbon-carbon correlation spectra (a) to determine the chemical shifts of labeled 

residues in KvAP. Secondary shifts for CO, Cα and Cβ of the labeled residues. Random coil 

chemical shifts were derived from reference (23). 

 

 

Figure 7.2. A representative 31P spectrum collected to ensure bicelle alignment (a). 2D N-H 

DIPSHIFT spectra for static aligned-bicelle KvAP S4 samples. Different labeling schemes were 

used to aid in spectral assignment, the SLF spectrum for V7, L9 labeled sample is shown in b) 

and the G2, L6, I15 data is shown in c). The added spectrum is displayed in d). The heterogenous 

peak at 110 ppm is assigned to G2 which is known to be unstructured in the helix from isotropic 

chemical shift analysis (see Figure 7.1). 

 

Membrane bound peptide orientation 

To determine the orientation of the S4 helix in lipid bilayers, two different peptide 

containing oriented bicelle samples, one containing uniform 13C-15N isotopic labeling at 

residues G2, L6, I15 and the other containing labeled V7, L9 were prepared and 

confirmed to be aligned by 31P NMR (Figure 7.2a). The 31P spectra of the peptide 
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containing bicelles show no isotropic peak, which indicate that the S4 helix does not 

strongly disrupt the bilayer organization. 2D dipolar/chemical shift correlation 

experiments (2D DIPSHIFT) (22) were carried out on these samples, the spectra are 

shown in Figure 7.2 b-d. Having two different labeling schemes eases assignment of the 

peaks in the experimental spectrum. The G2, L6, I15 spectra (Figure 7.2c) has a broad 

peak that is heterogenous in both dimensions centered at 106 ppm. Because this amount 

of inhomogenity suggests an unordered local environment this resonance is assigned to 

the unordered N-terminus G2 residue. The added spectra are shown in Figure 7.2d. 

 
Figure 7.3. Experimental 2D 1H-15N dipolar coupling and 15N chemical shift correlation spectra 

overlaid with calculated patterns (black lines) for ideal α-helix (psi = -64°, phi = -40°). Best fit is 

τ=40° ± 5°. Simulated curves are scaled in the dipolar and chemical shift dimension by -0.5 

because of fast bicelle rotation at 90° to B0 as well as by 0.8 as a general order parameter (24) 

(see Figure 7.4). The dipolar dimension is further scaled by 0.54 to account for the scaling factor 

of FSLG homonuclear decoupling during t1.  

 

 Figure 7.3 shows the experimental 2D dipolar vs chemical shift data overlaid with 

simulated PISA wheels for ideal α-helicies with phi=-64° psi=-40°. The tilt angle (τ) has 

been varied over every 10 degrees in the allowed range of 0-90°. For τ values other than 

40° the 15N anisotropic chemical shifts and 1H-15N dipolar coupling values do not fall 

inside of the simulated range so the best fit τ value is 40°±5°. Simulated data is scaled in 

both dimensions according to equations 7.2 and 7.3. The theroretical value of -0.5, which 

is the solution to 
1
2

3cos2θ −1( ) for θ=90°, is used to account for the fast motion of the 
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bicelles at 90° to B0, and the dipolar dimension scaling factor due to FSLG homonuclear 

decoupling is set to 0.54 by measuring the coupling observed on a model compound (data 

not shown). Further motion of the bicelle often referred to as bicelle wobble scales both 

dimensions by an order parameter that is refered to as Sbicelle. Work by others has shown 

the order parameter of bicelles to be ~0.8 (15, 24-26). Figure S7.2 shows the variation of 

Sbicelle from 1.0 – 0.7 at a constant τ of 40°. The best fit is Sbicelle=0.8. Based on the 

literature values and the good fit provided by using Sbicelle=0.8 this factor is used in both 

dimensions for all simulations. 

 

Figure 7.4. Variation of ρ at constant τ = 40°. Spectral assignments are appended directly in 

color. Simulated points are filled black circles with simulation assignment in black. RMSD values 

are listed in upper right-hand corner. Best fit (lowest RMSD value) is ρ=280° and is indicated by 

a red circle. RMSD fits for ρ=0-160° are shown in Figure S7.1. ρ=100° is another local minimum 

in RMSD value because of the degeneracy of the labeling scheme. The RMSD value at ρ=100° is 

0.32, which is higher than ρ=280° because the V7, L9 residues are 200° apart and the symmetry 

is not perfect. 

 

 Once the τ value is constrained to 40±5°, the rotation angle (ρ) of the helix can be 

determined. The rotation angle is of interest to identify which direction the charged 

arginine sidechains are facing. In order to determine the ρ angle, it is necessary to assign 

the DIPSHIFT spectra. Since the spectra were collected in differently labeled samples the 
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task of assignment was simplified. Assignment of the experimental spectra was carried 

out by first requiring that the experimental spectrum has the correct order of peaks as 

predicted by the simulated PISA wheel, for example, going clockwise the order of the 

peaks must be 6, 9, 15, 7.  Then the assignment that retained this order and gave the 

lowest RMSD value was selected. A close degeneracy is introduced by the fact that the 

measured isotopic labels in each sample were included 180° and 200° apart on the helix 

for L6, I15 and V7, L9 respectfully. Figure 7.4 shows assigned experimental spectra with 

simulated points and RMSD values for ρ between 180°-360°.  The best fit by RMSD is 

ρ=280 ± 20° with a RMSD value of 0.20. ρ values in the range of 0-160° were also fit, 

for clarity these are shown in Figure S7.1. The near degeneracy of the labeled sites leads 

to another RMSD minimum at ρ=100°, but the RMSD here (0.32) is significantly higher 

than the ρ=280° value.  

 

Membrane topology 

The orientation of the peptide is clear, but the topology of the peptide in the 

membrane is not addressed by orientation measurements alone. In order to determine 

how the peptide is inserted into the membrane, we have also carried out 31P-13C REDOR 

measurements in DMPC/DMPG bilayers which give quantitative measurements of the 

distance from the peptide backbone (Cα) to the phosphorous in the lipid headgroups. 

These experiments were carried out on a peptide sample with labels at L6 and I15. By 

including labels 9 residues apart the distance resolution is quite good. With a rise of 1.5 Å 

per residue, this equates to labeled sites that are 13.5 Å apart in the α-helix. The results 

from the REDOR measurement are shown in Figure 7.5. L6 Cα is well resolved from all 

other peaks in the spectrum and the dipolar coupling between 13Cα and 31P is determined 

to be 29 Hz which equates to a distance of 7.5 Å as shown by the good fit of the 2-spin 

simulated curve. The I15 Cα peak is not well resolved from the lipid headgroup 

resonances but the contribution to the total signal is fairly low as will be shown. The 

REDOR curve measured with the lipid natural abundance contribution is shown in open 

circles in Figure 7.2d. To address the lipid overlap and the fast decay that it is expected to 

contribute, one REDOR point at 9.6 ms was measured with a double quantum filter to 
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remove all lipid contribution from the data. This point is shown as a empty square. As 

can be seen by comparing the filtered data with the unfiltered data the lipid contribution 

is present but not large. The best fit of the S/S0 decay curve is 54 Hz which corresponds 

to a distance of 6.1 Å.  

 
Figure 7.5. 13C-31P REDOR data for KvAP S4 in DMPC/DMPG lipid bilayers. Selective REDOR 

spectra without double quantum filtering are shown in a). Spectra shown in b) included a double-

quantum filter to remove lipid contribution to allow clean detection of I15 Cα. The S/S0 curve for 

L6 Cα is shown in c) best fit of 29 Hz which equates to a 7.5 Å distance. I15 Cα decay curve is 

shown in d), open symbols indicate non-filtered data while the filled square indicates SPC5 

filtered data. 13C labels are at 6th and 15th residues which are on opposite sides of the helix and 

14.6 Å apart.  

 

Discussion  

In the full KvAP protein the S4 domain has a α-helical secondary structure as 

shown by x-ray results (6). The isolated S4 helix studied here corresponds to residues 

113-130 of the full length protein. Based on the x-ray data, residues 116-137 form a α-

helix. It is therefore reasonable to expect the isolated sequence to form a helix from F4 at 

the N-terminus to the C-terminus end of the shortened sequence. By looking at the 

backbone 13C chemical shifts (Figure 7.1) it is clear that this conformation is retained in 

isolated S4. L6, V7, L9 and I15 all have the strongly positive Cα and CO secondary 

shifts coupled with weakly negative Cβ secondary shifts which are expected for a α-

helical secondary structure (23, 27). In the full-length protein G114, which corresponds 

to G2 here, is in a loop and the slightly negative secondary shifts for CO and Ca indicate 

that that unordered structure is retained in the protein fragment. This is a similar result to 

those found for the S4 segment of the Shaker potassium channel, where the N and C-
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termini were found to be less ordered in lipid vesicles while the middle of the sequence 

was a well defined helix with slow 2H exchange (28). The fact that the secondary 

structure of S4 is an α-helix is not suprising, the impact of this result is that G2 cannot be 

used for analysis of the orientation data for since the simulations require a known 

secondary structure. The unordered nature of the G2 residue allows it to be assigned in 

the static DIPSHIFT spectra shown in Figure 7.2c. Because the second residue is 

unordered it is expected to lead to a heterogenous peak in the dipolar/chemical shift 

correlation spectrum. This is observed in the peak at ~105 ppm which is broad in the 15N 

dimension and also displays two coupling strengths in the dipolar dimension. This 

inhomogenous peak is therefore assigned to G2. 

 

 

Figure 7.6. Possible insertion states for isolated S4 helix of KvAP in DMPC/DMPG bilayers that 

need to satisfy both the orientation measurement (τ=40° ρ=280°) and the REDOR distances. 

Backbone sites that were used in REDOR measurements are shown as red dots, arginine 

sidechains are shown explicitly. Half inserted peptide (a) addresses both restraints but is an 

unusual insertion state that is likely not thermodynamically stable given the ∆Gwater-bilayer for this 

sequence. The peptide can be set in the middle of the bilayer (b) but this leads to 13Cα-31P 

distances that ~11 Å which is much longer than the 6.1-7.5 Å measured by REDOR. An 

arrangement with the peptide in the middle of the bilayer can fit the data if 9 Å of membrane 

thinning is assumed (c). Helical wheel representation of KvAP S4 helix is shown in (d). 

Hydrophobic residues (L, I, F, V, G) are shown in red while arginine residues are shown in blue. 

Charged residues are consolidated to one side of the helix. 
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While the secondary structure of the peptide is as expected, how the peptide 

relates to the membrane is the main question of this study. The tilt angle (τ) of the peptide 

with respect to the membrane (29, 30) was found to be 40±5° with a rotation angle (ρ) of 

280±20°, which gives a transmembrane orientation for the helix. The orientational 

constraints give information about how the peptide relates to the membrane but are 

incomplete to discuss peptide-lipid interactions without further information about the 

peptide topology. Here the topology information that is present is distance constraints 

from Cα sites in the backbone of the peptide to the lipid headgroup phosphorous. Since 

the 31P spectra collected on the oriented lipid bilayers  and MAS samples (Figure 7.2a) 

have no signs of isotropic peaks that would be expected from bilayer disruption, a planar 

lipid bilayer is going to be assumed for the lipid membrane. The relatively short 13Cα-31P 

distances of 6.1 and 7.5 Å can be fit by having a half-inserted helix with the bilayer plane 

bisecting the labeled sites as shown in Figure 7.6a. Here, the vertical distance between L6 

Cα and I15 Cα is measured to be 13.0 Å which is close to the sum of the REDOR 

distances which is 13.6 Å. However, this orientation would require that half of the S4 

helix extend outside of the low-dielectric membrane environment. Given the strongly 

negative ∆Gwater-bilayer value of -13.7 kcal/mol for this peptide (31) having an insertion 

state with so much water-peptide contact seems unlikely. Alternatively, the peptide could 

be inserted in the center of the membrane as shown in Figure 7.6b, but this arrangement 

can be ruled out by the REDOR constraints. For an unperterbed DMPC lipid membrane 

the Dpp is 35 Å. Taking the sum of the REDOR distances which is 13.6 Å plus the 

vertical distance between the L6 and I15 backbone labels of 13.0 Å gives a total length of 

26.6 Å which is ~9 Å too short for the DMPC  membrane P-P distance (Figure 7.6b). To 

address the issue of the membrane being too thick for this peptide insertion we suggest 

that the membrane is thinned by 9 Å by the presence of peptide as shown in Figure 7.6c. 

Membrane thinning in the presence of peptides has been suggested before based on NMR 

measurements (32), and for the isolated S4 helix peptide in particular by MD simulations 

(10, 11). If the dramatic membrane disruption with direct lipid-peptide interactions 

suggested by MD simulations (11) is happening in these samples it does not present itself 
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as changes in the 31P lineshape in either the oriented bicelle samples or in static 31P 

spectra of MAS samples (Figure 7.2a). In Figure 7.6 the R5 and R8 sidechains shown 

with torsion angles of mtm-85° while R11 and R14 sidechain torsion angles are tpt85°. 

These are both populated sidechain conformation for arginine in α-helices (33), and were 

chosen because they increase the overlap between the charged arginine sidechain with the 

hydrophilic regions of the membrane by snorkeling. Further measurements of arginine-

lipid distances would give considerable information about the lipid-arginine sidechain 

interactions in this system that can only be speculated about now. 

The S4 helix is very hydrophobic with regularly spaced charged arginine residues 

as can be visualized with the helical wheel shown in Figure 7.6d. The helix is not very 

amphipathic as observed by the low calculated hydrophobic moment, µH = 2.0 (31) which 

is expected for a transmembrane peptide such as the M2 TMP, while common 

interfacially bound peptides such as Magainin-2 and Melittin have µH values in the range 

of 5-7, so a transmembrane arrangement as opposed to a surface bound orientation should 

be expected for the S4 helix. A transmembrane result agrees with the measurements made 

on a similar sequence by Hessa et al. (12), where the peptide was found to translocate 

across the lipid bilayer despite the high charge presented by the arginine sidechains. In 

the case of the S4 helix where there is a coexistence of mostly hydrophobic residues with 

some charged sidechains the fluid lipid bilayer can adapt to accommodate both types of 

residues possibly with water channels and lipid headgroup-arginine sidechain 

complexation (10, 11). The orientation of the isolated S4 helix together with the altered 

lipid membrane is consistent with the evidence that in full-length Kv proteins lipid-

voltage sensor interactions are present (9, 34) and important for sensor domain function.  

 

Conclusion 

The orientation and topology of the isolated S4 helix from KvAP was measured 

by solid-state NMR. The α-helix was found to span the membrane with a tilt angle of 

40±5° and a rotation angle of 280±20°. The transmembrane orientation makes sense 

considering the low amphiphilicity of the sequence. The DMPC membrane was found to 
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be thinned by 9 Å likely to accommodate the charged arginine sidechains dispersed 

throughout the otherwise hydrophobic sequence. 
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Supporting Information 

Table S7.1. Isotropic chemical shifts and secondary shifts (ppm) of 13C-labeled sites in isolated 

S4 segment of KvAP. G2 in the shortened sequence corresponds to G114 in the full length KvAP 

sequence. 

Residue Site 

KvAP 

δiso  ∆δiso  

G2 CO 172.6 -0.7 

 Cα 43.64 -1.04 

L6 CO 174.91 1.39 

 Cα 53.15 2.65 

 Cβ 40.17 -0.77 

V7 CO 174.06 1.94 

 Cα 60.1 4.8 

 Cβ 30.98 -1.68 

L9 CO 174.91 1.09 

 Cα 53.15 2.75 

 Cβ 40.17 -0.47 

I15 CO 173.76 2.14 

 Cα 58.94 2.96 

 Cβ 36.56 -0.46 
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Figure S7.1: RMSD fits for τ=40°, ρ=0-160° which are not shown in Figure 7.4. Local RMSD 

minimum is found at ρ=100°, but the RMSD here is still significantly higher than for ρ=280°. 

 

 

 

Figure S7.2. Confirmation of bicelle order parameter Sbicelle. Best fit is found for S=0.8, which is 

similar to the order parameters used by others for this lipid system (2-4).  
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 Abstract  

 The dynamics of hydration water in several phospholipid membranes of different 

compositions is studied by 2D 1H-31P heteronuclear correlation NMR under magic-angle 

spinning. By using a 1H T2 filter and 1H mixing time before and after the evolution 

period, inter-bilayer water is selectively detected without resonance overlap from bulk 

water outside the multilamellar vesicles. Moreover the 1H T2 relaxation time of the inter-

bilayer water is measured. Lipid membranes with labile protons either in the lipid 

headgroup or in sterols exhibit water-31P correlation peaks while membranes free of 

exchangeable protons do not, indicating that the mechanism for water-lipid correlation is 

chemical exchange followed by relayed magnetization transfer to 31P. In the absence of 

membrane proteins, the inter-bilayer water 1H T2’s are several tens of milliseconds. 

Incorporation of charged membrane peptides shortened this inter-bilayer water T2 

significantly. This T2 reduction is attributed to the peptides’ exchangeable protons, 

molecular motion and intermolecular hydrogen bonding, which affect the water dynamics 

and the chemically relayed magnetization transfer process.  

 

Introduction 

Water is essential to the structure and dynamics of biological molecules. The 

folding, dynamics and function of proteins and nucleic acids are strongly influenced by 

water. The self-assembly of amphipathic lipid molecules to form the bilayer that protects 

all cells also requires water. The hydration force between lipid bilayers has long been 

recognized as an important factor that influences the physical properties of lipid 
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membranes (1, 2). A wide range of biophysical techniques, including 2H NMR (3-6), 1H 

NMR (6-9), neutron scattering (10, 11), x-ray scattering (12, 13), Raman scattering (14), 

osmotic stress and surface force measurements (2), and molecular dynamics simulations, 

have been used to characterize the interaction of water with lipid membranes. The most 

extensively characterized lipid membranes are the phosphatidylcholines (PC), for which 

both the water dynamics (3, 4) and lipid dynamics (15) have been investigated as a 

function of hydration level and the membrane phase. However, so far few spectroscopic 

studies have directly compared the dynamics of water in lipids of different headgroups, 

and the effect of membrane proteins on water-membrane interactions has been scarcely 

investigated.  

High-resolution magic-angle spinning (MAS) NMR spectroscopy is an excellent 

approach for probing the structure and dynamics of lipid membranes (16, 17). Due to the 

fast uniaxial rotational diffusion of lipid molecules, hydrated lipid membranes exhibit 

well resolved 1H spectra under moderate magic-angle spinning, making 1H 1D and 2D 

MAS NMR the method of choice for investigating membrane dynamics and disorder 

(18). The heteronuclear 1H-31P 2D correlation technique is particularly sensitive to 

membrane-associated water. Since water residence time on the membrane surface is only 

on the order of 100 ps based on 1H NOESY experiment (7), direct dipolar coupling of 

water with the lipid phosphate group is not sufficiently strong to be detectable by NMR. 

Instead, water-31P correlation peaks in 2D spectra reflect water magnetization transferred 

to some lipid headgroup protons, then relayed to lipid protons closest to 31P before cross 

polarization (CP) to 31P.  

In this work, we probe the water-lipid interaction using the 1H-31P 2D correlation 

experiment and examine the dynamics of the lipid-correlated water by measuring its T2 

relaxation times. A number of membranes with different headgroup structures are 

studied. They include phosphatidylcholine, phosphatidylethanolamine (PE), and 

phosphatidylglycerol (PG). Cholesterol is added to one of the PC samples to study the 

effect of this important sterol on hydration water dynamics. Mixed PE/PG membranes 

containing two cationic antimicrobial peptides are then studied to examine the influence 

of membrane proteins containing polar charged residues on hydration water dynamics. 
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These membrane composition variations allow us to understand the effects of labile lipid 

protons, hydrogen bonding, membrane surface charge, sterol, and proteins on the 

hydration water dynamics.  

 

Materials and Methods 

Membrane sample preparation 

All lipids were purchased from Avanti Polar Lipids (Alabaster, AL) and used 

without further purification. Most samples were prepared by dissolving and mixing the 

lipids in chloroform, evaporating chloroform under a stream of dry nitrogen gas, then 

resuspending the lipid mixture in cyclohexane and lyophilizing overnight. Chloroform is 

necessary for complete mixing of the lipids, while cyclohexane is necessary for complete 

removal of the organic solvent after mixing. The dried lipid powder was packed into 4-

mm MAS rotors and directly hydrated. The amount of water added was approximate 35 

wt% of the total mass. The exact hydration level was determined by integration of the 1H 

NMR spectra. Antimicrobial peptides TP-I and PG-1 were synthesized using standard 

FMOC chemistry as described before (19, 20), and were reconstituted into POPE/POPG 

membranes by mixing lipid vesicle solutions with the appropriate amount of the peptide 

solution. The mixed solution was centrifuged at 150,000 g to obtain wet pellets, which 

were then lyophilized, packed into the rotor, and rehydrated to ~35 wt% water.  

 

Solid-state NMR experiments 

Magic-angle spinning (MAS) NMR experiments were carried out on a Bruker 

DSX-400 spectrometer (Karlsruhe, Germany) operating at Larmor frequencies of 400.49 

MHz for 1H and 162.12 MHz for 31P. An MAS probe equipped with a 4 mm spinner was 

used for all experiments. The samples were spun at 4.0 kHz in most experiments. Typical 
1H-31P cross polarization (CP) contact times were 4 ms and the Hartmann-Hahn match 

was established at 50 kHz. The 1H 90˚ pulse length was 5 µs, and the 1H decoupling field 

was 42-50 kHz during 31P detection. Recycle delays for the 1H-31P 2D correlation 

experiments were 2.5-3.0 s. The 1H chemical shifts were internally referenced to the lipid 

chain CH3 signal at 0.9 ppm (21).  
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 1H-detected water T2’s were measured using a 1D Hahn-echo experiment. 31P-

detected water T2’s were measured using the 2D 1H-31P correlation experiment with a 1H 

mixing period and a pre-evolution T2 filter (Figure 8.1) (22). In this experiment, 31P 

magnetization is first destroyed by several 90˚ pulses. A 1H 90˚ excitation pulse is then 

applied, followed by a Hahn-echo period with a variable delay 2τ. 1H chemical shift 

evolution (t1) ensues, then the 1H magnetization is stored along the z-axis for a period tm, 

during which magnetization transfer occurs by either spin diffusion or nuclear 

Overhauser effect (NOE). Finally, the 1H magnetization is cross-polarized to 31P for 

detection in t2. A series of 2D experiments with varying echo delays 2τ was conducted to 

measure the T2 of the water protons that correlate with the lipid 31P. Mixing times of 1 ms 

to 225 ms were used in the 2D experiments. 

 

Figure 8.1. Pulse sequence for the 2D 1H-31P correlation experiment with a 1H T2 filter period of 

2τ and a mixing period of tm. Filled and open rectangles denote 90˚ and 180˚ pulses.   

 

 

Figure 8.2. Headgroup structures of the phospholipids used in this study. (a) POPC. (b) POPE. 

(c) POPG. R and R’ denote oleoyl and palmitoyl chains, respectively.  
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Results  

1D 1H MAS spectra – bulk water and inter-bilayer water 

The goal of this study is to investigate the interaction between water and lipid 

membranes with different headgroups and measure the dynamics of the hydration water 

of the membrane. Phospholipids containing palmitoyl and oleoyl chains were used in all 

samples because these acyl chains are the most abundant in biological membranes. The 

PC, PE and PG headgroup chemical structures and their nomenclatures are shown in 

Figure 8.2. The three lipids have different gel to liquid-crystalline phase transition 

temperatures (Tm): –2˚C for POPC and POPG and 25˚C for POPE. The dynamics of 

hydration water should depend both on the bulk water property and the membrane 

dynamics. We chose to conduct the NMR experiments at similar temperatures with 

respect to their phase transition temperatures (Tm). This reduced temperature, ∆T = T-Tm, 

was set to be 5-7˚C for the various membranes studied (Table 8.1). For mixed 

POPE/POPG membranes the weighted molar average of lipids is used to find the Tm of 

the mixture.  

 

Table 8.1: Water 1H T2 (ms) values observed from 1D 1H and 2D 1H-31P spectra.  

Membrane 1D, Narrow 1D, Broad 2D T (˚C) ∆T (˚C) 

POPC - 59±1 - 5 7 

POPC/cholesterol (3:2) 375±40 23±1 15±1 5 7 

POPE 410±70 18±1 16±2 30 5 

POPG - 32±1 30±3 5 7 

POPE/POPG (3:2), POPE 
81±4 - 

30±2 20 6 

                                POPG 40±1 20 6 

POPE/POPG/TP-I (9:6:1) 82±1 4.5±0.5 3.3±0.3 20 6 

POPE/POPG/PG-1 (8:4:1) - 16±1 0.4±0.2, 12±1 25 7 
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Table 8.2: Water 1H chemical shifts (ppm) in various lipid membranes. The bulk water 

frequencies are obtained from 1D 1H spectra, and the inter-bilayer water frequencies are obtained 

from 2D 1H-31P spectra.  

Membrane Bulk Inter-bilayer 
POPC - 4.92 
POPC/cholesterol (3:2) 5.00 4.94 
POPE 4.71 4.66 
POPE/POPG (3:2) 4.79 4.71 
POPE/POPG/TP-I (9:6:1) 4.91 4.86 
POPE/POPG/PG-1 (8:4:1) 4.80 4.76 

 

Figure 8.3 shows the 1D 1H MAS spectra of the POPC, POPE, and POPE/POPG 

mixed membranes. The 1H peaks are assigned based on literature chemical shift values 

(23-25) and additional 1H-13C 2D correlation spectra measured directly on these samples 

(not shown). Close inspection of the water region of the 1H spectra show two partially 

resolved peaks – a narrow downfield component and a broad upfield component - for 

POPC/cholesterol, POPE, and POPG membranes but not for the POPC membrane 

(Figure 8.4). The chemical shift difference between the two components is about 0.05 

ppm (Table 8.2). We assign the sharp peak to mobile bulk water outside the multilamellar 

vesicles and the broad peak to inter-bilayer water that interacts intimately with the lipids. 

The partial spectral resolution means that the two types of water are in slow exchange 

with rates less than 0.05 x 400 x 2π = 125 s-1, consistent with prior experiments on 

membranes packed in spherical inserts (8). Hahn echo detection with a long echo period 

preferentially suppressed the broad upfield peak, supporting the presence of two types of 

water. The 1H T2 relaxation times of the two water peaks are listed in Table 8.1: the broad 

water T2 (~ 20 ms) is an order of magnitude shorter than the narrow water T2 (~400 ms) 

for the POPC/cholesterol and POPE membranes. For the peptide-containing POPE/POPG 

membranes, the 1H T2’s of the broad water peak is generally shorter than the pure 

membranes. The TP-I sample retains the order-of-magnitude difference between the bulk 

water and inter-bilayer water T2. The PG-1 sample shows only a single water peak, with a 

short 1H T2 of 16 ms.  
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1H- 31P 2D correlation spectra – 1H T2 of the inter-bilayer water 

Since 1D 1H spectra do not completely resolve the inter-bilayer water signal from 

the bulk water signal, it is of interest to selectively detect the inter-bilayer water in the 

absence of the dominant bulk water peak. The 2D 1H-31P correlation experiment with 1H 

mixing (22, 26) achieves this purpose and at the same time verifies the assignment of the 

broad water peak to inter-bilayer water. In this experiment, the 1H spins closest to the 

lipid phosphate group, Hα and G3, cross-polarize to 31P. Protons further from the 

phosphate group, including water, first transfer their magnetization to Hα and G3 by a 

number of possible mechanisms, including chemical exchange, spin diffusion, and 

dipolar cross relaxation (i.e. NOE), then cross-polarize to 31P. A mixing time of 64 ms 

and a 1H-31P CP contact time of 4 ms were typically used in the 2D experiments. When 

water cross peaks are not detected under these conditions, the mixing time was extended 

to 225 ms. Figure 8.5 shows two representative 1H-31P 2D spectra, for the POPC 

membrane and the POPE/POPG membrane, and Figure 8.6 compares the 1H cross 

sections for six lipid membranes with their respective 1D 1H direct-excitation spectra. 

Several common features are observed in the 2D spectra. First, the strongest 1H-31P cross 

peaks come from the headgroup Hα and glycerol G3, as expected due to the proximity of 

these methylene groups to 31P. The G3 cross peak is broader and lower than Hα which is 

expected because no 1H homonuclear decoupling is applied during the evolution time and 
1H-1H dipolar coupling for G3 are a factor of 3.5 times stronger than Hα due to the nearly 

parallel orientation of the G3 geminal H-H vector to the lipid motional axis (27). On the 

other hand, G3 protons do not cross polarize much more efficiently than Hα to 31P since 

the 1H-31P dipolar coupling for G3 is only a factor of 1.5 stronger than for Hα (27).  The 

second common feature among the spectra is that the acyl chain CH2 also exhibits a cross 

peak with 31P, indicating chain-headgroup contacts. A significant contribution to this 

cross peak is intermolecular 1H-1H NOE due to chain upturns in the fluid bilayer, as 

shown before for non-cholesterol-containing membranes (28, 29). Finally, water-31P 

cross peaks are observed between 4.7 and 5.1 ppm for all membranes except for POPC, 

and in most cases have lower intensities than the Hα peaks. This is consistent with the 



www.manaraa.com

 

 

129

intermolecular nature of the water-31P magnetization transfer and the high mobility of 

water.  

 

Figure 8.3. 1D 1H MAS spectra of three hydrated lipid membranes. (a) POPC. (b) POPE. (c) 

POPE/POPG membrane. (d) Inset for the POPE/POPG membrane showing the assignment for the 

3.0-4.6 ppm region.  

 

In the following we describe the water-31P cross peak for each lipid membrane. 

The POPC membrane does not exhibit any water-31P cross peak up to 225 ms mixing 

(Figure 8.6a). We attribute this absence to the lack of exchangeable protons in the POPC 

headgroup, since all other membranes studied here contain labile protons and exhibit 

water cross peaks in 2D spectra. Negative water-headgroup 1H-1H cross peaks in 2D 

NOESY spectra, corresponding to positive water-headgroup cross relaxation rates, have 

been reported for POPC membranes (7, 9). Thus, the lack of a water-31P cross peak 
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suggests that the water-headgroup dipolar coupling, while present, is not strong enough to 

be detected by the current 2D 1H-31P correlation experiment. In addition, the 1D 1H 

spectrum of POPC shows only a single water peak, thus the water signal must come from 

the inter-bilayer hydration water rather than the bulk water outside the multilamellar 

vesicle.  

 

Figure 8.4. Water region of the 1D direct-excitation 1H MAS spectra of lipid membranes without 

(thin line) and with a T2 filter (thick line). (a) POPC/cholesterol membrane. The echo delay (2τ) 

is 80 ms. (b) POPE/POPG (3:2) membrane. 2τ = 30 ms. (c) POPC membrane. 2τ = 80 ms. Note 

the one-component nature of the POPC spectrum.  

 

In contrast to the pure POPC membrane, the addition of cholesterol to the POPC 

membrane gave rise to a strong water cross peak (Figure 8.6b) that matches the position 

of the broad water peak in the 1D spectrum (Figure 8.4a). Varying the T2 filter time of 

the 2D experiment yielded a 31P-detected water T2 of 15 ms, in qualitative agreement 

with the 1D-detected T2 (Table 8.1). We attribute the water cross peak in the 

POPC/cholesterol membrane to the combined effect of exchange between water and the 
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cholesterol hydroxyl proton and the condensing effect of cholesterol on lipid membranes, 

which facilitates 1H spin diffusion. 

 

 

Figure 8.5. Representative 2D 1H-31P correlation spectra of hydrated lipid membranes with a 

mixing time of 64 ms. (a) POPC. (b) POPE/POPG (3:2) membrane. 1H peak assignment is 

indicated. POPC lacks a water-31P cross peak. Extending the mixing time to 225 ms still yields no 

water cross peak. Spectra were measured under 4.0 kHz MAS. 

  

The POPE membrane exhibits a weak water cross peak at 4.66 ppm (Figure 8.6c) 

in the 2D spectrum with a 16 ms T2, consistent with the 18 ms T2 found in the 1D spectra. 

Figure 8.7 shows several water 1H T2 decay curves detected using the 1D 1H and 2D 31P-

detected experiments. The POPE data highlights the spectral simplification by 2D 

correlation: the 1D T2 decay is bi-exponential due to the partial overlap of the inter-

bilayer and bulk water signals, while the 2D-detected T2 decay is single exponential, 

reflecting only the inter-bilayer water dynamics.  

For the POPE membrane, the water cross peak most likely results from chemical 

exchange between water and the headgroup amine protons (Hγ) followed by relayed 

magnetization transfer to 31P. The native Hγ-31P cross peak, if protected from exchange, 

would be negligible, since the Hβ-31P cross peak is already very weak. The monotonic 

intensity decrease of 1H-31P cross peaks from Hα to Hβ and Hγ is clearly seen in the 2D 
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POPC spectrum (Figure 8.6a), which does not have resonance overlap between water and 

Hγ.  

 

Figure 8.6. 1H direct-excitation spectra (top) and cross sections from 1H-31P 2D spectra (bottom) 

of various lipid membranes. Dashed lines guide the eye for the water peak. The most significant 

lipid peaks are assigned. (a) POPC membrane. (b) POPC/cholesterol membrane. (c) POPE 

membrane prepared from organic solution. (d) POPE membrane prepared from aqueous solution. 

(e) POPE/POPG membrane with TP-I. (f) POPE/POPG membrane with PG-1.  

 

To examine the influence of sample preparation methods on hydration-water 

dynamics, we prepared another POPE sample by making a vesicle solution, subjecting it 

to several freeze-thaw cycles, then centrifuging the solution to give a pellet. This aqueous 

sample gave a broad water peak at 5.09 ppm (Figure 8.6d), which is 0.43 ppm downfield 

from the broad water peak in the “organic” sample. This downfield water peak shows a 
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T2 of 4.9 ms from the 2D experiments. The chemical shift of the lipid-associated water 

peak is the weighted average of the NH3 chemical shift and the water proton chemical 

shift. Lys NH3 protons in proteins protected from exchange have a chemical shift of 7 – 8 

ppm (30), thus the downfield displacement of the inter-bilayer water peak in the aqueous 

POPE sample indicates that the amount of the inter-bilayer water is smaller in the 

aqueous sample than in the organic sample. Similarly, the shorter water T2 (4.9 ms) of the 

aqueous POPE sample compared to the organic sample (16 ms) can be attributed to the 

stronger influence of the NH3 proton dynamics in the exchange-average T2. The 1H T2’s 

of the POPE headgroup decrease from Hα to Hβ, in contrast to the POPC headgroup, 

which has increasing T2’s from Hα (27 ms) to Hβ (38 ms) and Hγ (71 ms). The shorter 
1H T2 towards the end of the POPE headgroup most likely reflects intermolecular 

hydrogen bonding between NH3
+ and PO4

- of neighboring lipid molecules, which restricts 

the headgroup mobility (31, 32).  

 

Figure 8.7. Representative 1H T2 curves from 1H 1D and 1H-31P 2D correlation spectra. Left 

column: POPE membrane. (a) 1D 1H-detected T2 decay of the narrow water peak, (b) 2D 31P-

detected water 1H T2 decay. Right column: POPE/POPG membrane. (c) 1D 1H-detected T2 decay 

of the water peak, (d) 2D 31P-detected water 1H T2 decay. Filled squares: POPE. Open squares: 

POPG. Note that the time axis is not the same for all panels.  

 

To obtain further insight into the nature of the POPE hydration water, we 

examined the temperature dependence of the water cross peak in the 2D 1H-31P spectra. 
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Figure 8.8a shows the 1D cross sections of the organic POPE sample from 20˚C to 40˚C. 

The spectra were collected with identical scans and plotted on the same intensity scale 

after taking into account small CP efficiency differences. The water cross peak decreases 

with increasing temperature, with the most significant change occurring across the phase 

transition temperature of 25˚C. We also examined the mixing-time dependence of the 

water cross peak at 30˚C. The water cross peak was detected as early as 4 ms, as shown 

in Figure 8.8b.  

The POPG membrane shows a single water peak in the 1D spectra with a T2 of 32 

ms and a water-31P cross peak in the 2D spectrum with a similar T2 of 30 ms. The high 

salt content of this lipid made the samples susceptible to rf heating and degradation so 

that variability in the cross peak intensity was observed. Buffering the membrane pH to 7 

stabilized the sample to some extent and gave rise to a clear water-31P cross peak in the 

64 ms 2D spectra. Mixing POPG with POPE lipids also created stable membranes, with 

reproducible water-31P cross peak intensities for both the POPE and POPG components. 

Figure 8.5b shows the 2D spectrum of the POPE/POPG (3:2) membrane, exhibiting two 

well resolved 31P peaks along with their respective water cross peaks. The water 1H T2 

values are 30 ms for POPE and 40 ms for POPG (Table 8.1). Since the organic POPE 

membrane alone has a water T2 of 16 ms, the mixture result indicates that POPG 

lengthened the T2 of the POPE component.   

 

Effect of cationic membrane peptides on inter-bilayer water T2.  

We next examined the inter-bilayer water dynamics in the presence of two 

cationic membrane peptides. Tachyplesin-I (TP-I) and protegin-1 (PG-1) are Arg-rich 

cationic β-hairpin antimicrobial peptides that have recently been extensively 

characterized by solid-state NMR (19, 20, 33, 34). We measured the 2D 1H-31P spectra of 

POPE/POPG membrane containing these peptides. The 31P spectra no longer resolve the 

two lipids due to line broadening by the peptides. The 1H cross sections are shown in 

Figure8.6e, f. For the TP-I sample, the water cross peak is relatively broad and is lower 

than the main Hα/G3 peak, similar to the other membranes. In contrast, the PG-1 sample 

exhibits a narrow and much stronger water peak with similar intensity as the Hα/G3 
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peak. The T2 decay of these 2D-detected water peaks are shown in Figure 8.9. Both 

peptide-containing samples exhibit much shorter water T2’s than the pure POPE/POPG 

membrane: 3.3 ms for the TP-I sample and 0.4 ms (20%) and 12 ms (80%) for the PG-1 

sample (Table 8.1).  

 

Figure 8.8. 1H cross sections of the 2D 1H-31P spectra of hydrated POPE membrane. (a) 

Temperature dependence of the water cross peak intensity. Mixing time was 64 ms for all spectra. 

(b) Mixing time dependence of the water cross peak intensity at 30˚C.  

 

The double-exponential nature of the water T2 decay for the PG-1-containing 

membrane is noteworthy. The large value of 12 ms is similar to the 1D-detected water T2 

of 16 ms. Since the water cross peak is much higher in this sample than in the other 

samples, we assign the longer T2 component to highly mobile water between bilayers, 

whose magnetization is transferred to 31P as a result of the immobilized β-barrel 

assembly of PG-1 molecules (34). In other words, the rigid peptide oligomers provide an 

efficient spin diffusion pathway from water to the lipid 31P. This assignment is confirmed 

by 13C-1H 2D correlation spectra that correlate the 13C labeled residues in PG-1 with 

water 1H. The spectra showed similar water T2 dephasing as the 31P-detected experiment 

(Figure 8.9), indicating that the same water molecules correlate with the lipid phosphate 
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and with the peptide. The implication of this assignment is that the main water peak in 

the 1D 1H spectra of the PG-1 sample results from near-isotropic inter-bilayer water 

rather than bulk water outside the liposomes, similar to the POPC membrane. The 

absence of this long-T2 in the TP-I sample can be attributed to the extensive dynamics of 

TP-I that prevents the detection of the highly mobile inter-bilayer water (19).  

 

 

 

Figure 8.9. 31P-detected water 1H T2 decays of the POPE/POPG membrane containing cationic 

peptides. Open squares: TP-I. Filled squares: PG-1. Open circle: PG-1 13C-detected water cross 

peak intensity.  

 

Discussion  

 The lipid membranes used in this study are multilamellar vesicles that can have 

two very different types of water: bulk water outside the vesicles and inter-bilayer water 

within the vesicles. The observation of two partially resolved water 1H peaks in the slow-

exchange limit with very different T2’s supports the assignment of these two types of 

water.  

The nature of water-membrane interaction has been extensively discussed in the 

literature. Early 2H NMR studies (4) led to the proposal of as many as three types of 

membrane-bound water, including tightly bound, weakly bound, and trapped water with 

fast exchange between the layers. More recent studies monitoring hydration-dependent 
2H quadrupolar couplings indicate that the inter-bilayer water dynamics is a continuous 

function of hydration level (3). A single quadrupolar splitting was observed for up to ~15 
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water molecules per POPC molecule (n = 15), above which a zero-frequency peak grows 

in that corresponds to bulk water in slow exchange with the inter-bilayer water. The 

single-component nature of the 2H spectra below n = 15 indicates that all inter-bilayer 

water undergoes rapid exchange on the 2H NMR timescale. Thus, phenomenologically, 

we do not further distinguish among inter-bilayer water molecules (3, 35), even though 

the middle of the hydration layer has more isotropic water than the region near the 

membrane surface. 

While water 2H NMR spectra of hydrated phospholipids give information on the 

residual quadrupolar coupling due to the inter-bilayer water anisotropy induced by the 

membrane, the 2D 1H- 31P correlation technique is more sensitive to chemical exchange 

between water and labile lipid protons and to water-lipid dipolar interactions. The fact 

that the only lipid membrane that does not exhibit a water-31P correlation peak, POPC, is 

also the only lipid without any labile protons proves the essential role that chemical 

exchange plays in intermolecular magnetization transfer. POPE and POPG headgroups 

possess labile NH3 and OH protons, whose exchange rates have been measured in amino 

acids to be in the range of 1000-4000 s-1 at 36˚C and pH 7.0 (36). The exchanged water 
1H magnetization can then be relayed to Hα before cross-polarizing to 31P. This 

mechanism was termed chemically relayed nuclear Overhauser (or spin diffusion) effect, 

and its dependence on exchange rate and molecular motional correlation time have been 

analyzed in detail by 2D 1H-1H correlation NMR (37).  

The rate of chemical exchange increases with temperature while the rate of 

dipolar magnetization transfer decreases with temperature. Thus, the change of the water 

cross peak intensity with temperature depends on the relative sensitivity of the two 

processes on temperature (36). For the POPE membrane, we found that the water-31P 

cross peak increases as the temperature decreases and upon entering the gel phase the 

cross peak intensity increases dramatically. This indicates that the more efficient 1H spin 

diffusion in the gel-phase membrane outweighs the reduction of the proton exchange rate 

at low temperature. However, this does not mean that exchange is unnecessary for the 

detection of the water-31P cross peak. At 30˚C, the water-NH3 exchange rate of several 

thousand times per second (36) is much faster than the rate of 1H spin diffusion and 
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cross-polarization from NH3 to 31P. The 1H-31P dipolar couplings to the nearest 

methylene groups of Hα and G3 are 200-300 Hz in liquid-crystalline PC and PE 

membranes (27), thus the magnetization transfer rate from the more remote Hγ is at most 

several tens of hertz. Thus, the limiting factor in the chemically relayed nuclear 

Overhauser or spin diffusion process is the dipolar transfer rather than chemical 

exchange, and the temperature dependence of the dipolar transfer determines the overall 

intensity of the water cross peak. Recently it was shown that the 2D 1H-31P experiment is 

able to detect a water cross peak in sphingomyelin (SM) membranes but not in PC 

membranes (38). While this difference is partly due to the rigidity of the SM membrane 

over the PC membrane, the presence of two labile protons in the SM backbone, which are 

absent in glycerophospholipid backbones, is almost certainly necessary for the 

observation of the water cross peak.  

 POPC differs from other membranes not only in having no labile protons in the 

headgroup, but also in having a single water signal with a T2 (~60 ms) that falls between 

the bulk water T2 (~400 ms) and inter-bilayer T2 (15-40 ms) of the other membranes. We 

assign this signal to inter-bilayer water for the following reasons. First, PC is much more 

hygroscopic than PE and PG lipids, as reflected by a thicker hydration layer and stronger 

repulsive hydration forces (2, 31). The higher hydration of PC compared to similarly 

zwitterionic PE lipids is attributed to the methylation of the primary amine in the PC 

headgroup, which weakens the attractive inter-bilayer forces resulting from hydrogen-

bonded water bridges between apposing bilayers. Further, molecular dynamics 

simulations showed that the PC trimethylamine group has a much larger hydration shell 

than the PE amine (32) (39) due to the absence of hydrogen bonding. Thus, more inter-

bilayer water is required to hydrate PC than PE. Finally, our POPC sample has 15-18 

water molecules per lipid based on the 1H spectral integration. This is in the regime of 

little bulk water based on 2H NMR (3), thus supporting the assignment of the single water 
1H peak to inter-bilayer water.  

The lipid-correlated water 1H T2’s increase in the direction of POPC/cholesterol ≤ 

POPE < POPG. Although it is tempting to interpret this trend as reflecting the interaction 

strengths between water and the various lipid membranes, the water T2 is the weighted 
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average of the inter-bilayer water and labile lipid proton T2’s, thus the lipid proton T2 

affects the measured water cross peak T2. For example, POPE Hβ has a shorter T2 (~ 20 

ms in the organic sample and ~ 7 ms in the aqueous sample) than the Hα protons (~25 ms 

in all samples), thus POPE Hγ protons should have an even shorter intrinsic T2, which 

should shorten the measured water cross peak T2. Among all the lipid membranes studied 

here, the POPC/cholesterol bilayer is the most rigid and thus its water cross peak should 

have the largest contribution from direct dipolar effects between water and the lipid. Even 

so, the magnetization transfer pathway most likely involves an initial step of exchange 

from water to the cholesterol hydroxyl proton, followed by back transfer to the lipid 

chains and then to the lipid headgroup. Mixing time dependence of the POPC/cholesterol 

2D spectra (not shown) indicates that the water cross peak buildup is slower than the 

POPE membrane, consistent with a magnetization transfer pathway that involves lipid 

chain protons next to the rigid sterol rings.  

 

Figure 8.10. Topological structures of TP-I and PG-1 in POPE/POPG membranes. (a) TP-I is 

monomeric and mobile and lies at the membrane-water interface. (b) PG-1 is transmembrane and 

forms immobilized β-barrels.  

 

 Inclusion of cationic membrane peptides reduced the lipid-correlated water T2 to a 

few milliseconds. The number of labile protons in TP-I and PG-1 is similar. TP-I has 17 

residues while PG-1 has 18, with the corresponding labile backbone amide protons. TP-I 

has five Arg residues and one Lys, each with exchangeable sidechain NHn protons, while 

PG-1 contains six Arg residues. TP-I and PG-1 contain two and one hydroxyl-containing 

Tyr residues, respectively. However, the exposure of these labile protons to water and the 

efficiency of 1H-1H dipolar transfer differ significantly between the two peptides due to 

their different topological structures in the membrane. TP-I binds to the membrane-water 

interface near the glycerol backbone (33), is oriented roughly parallel to the membrane 
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plane (40), and is highly dynamic (19). In contrast, PG-1 forms immobilized 

transmembrane β-barrels in the anionic membrane (34, 41) (Figure 8.10), whose 

extensive intermolecular hydrogen bonding should shield some backbone NH protons 

from exchange. Thus, TP-I should experience more efficient water exchange than PG-1. 

But since the limiting factor in the water-31P cross peak detection is the dipolar transfer 

rate rather than the exchange rate, the immobilized PG-1 backbone transfers whatever 

level of exchanged water magnetization to the lipid 31P much more efficiently than the 

dynamic TP-I. PG-1 thus shows a higher water cross peak than TP-I, and allows the 

observation of more isotropic inter-bilayer water, which is not observed in the TP-I 

sample.  

 

Conclusion 

The current 2D 1H-31P correlation study indicates that chemical exchange plays an 

essential role in the dynamics of hydration water in lipid membranes. The presence of a 
31P-correlated water peak in the 2D spectra requires exchangeable lipid protons, while the 

intensity of the cross peak is mainly determined by the 1H-1H dipolar transfer efficiency. 

The 31P-detected 1H T2 of the inter-bilayer water is the exchange-averaged T2 of all inter-

bilayer water and the labile lipid proton, and depends on the hydration level of the 

membrane and the property of the labile proton. Cholesterol facilitates the detection of 

the inter-bilayer water through its condensing effect on the membrane. Cationic 

membrane proteins affect the hydration water dynamics through intermolecular hydrogen 

bonding and protein dynamics.  
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Abstract  

 We show that for observing high-resolution heteronuclear NMR spectra of 

anisotropically mobile systems with order parameters less than 0.25, moderate magic-

angle spinning (MAS) rates of ~11 kHz combined with 1H decoupling at 1-2 kHz are 

sufficient. Broadband decoupling at this low 1H nutation frequency is achieved by 

composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS 

low-power decoupling technique on hydrated POPC lipid membranes, and show that 1 

kHz 1H decoupling yields spectra with the same resolution and sensitivity as spectra 

measured under 50 kHz 1H decoupling when the same acquisition times (~ 50 ms) are 

used, but the low-power decoupled spectra give higher resolution and sensitivity when 

longer acquisition times (> 150 ms) are used, which are not possible with high-power 

decoupling. The limits of validity of this approach are explored for a range of spinning 

rates and molecular mobilities using more rigid membrane systems such as 

POPC/cholesterol mixed bilayers. Finally, we show 15N and 13C spectra of a uniaxially 

diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 

11 kHz MAS and 2 kHz 1H decoupling. The peptide 15N and 13C intensities at low power 

decoupling are 70-80% of the high-power decoupled intensities. Therefore, it is possible 

to study anisotropically mobile lipids and membrane peptides using liquid-state NMR 

equipment, relatively large rotors, and moderate MAS frequencies.  
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Introduction 

 Very fast magic-angle spinning (MAS) frequencies of greater than 40 kHz 

combined with low-field 1H decoupling of 5 – 25 kHz has been shown to yield 

heteronuclear spectra of rigid organic solids with comparable linewidths and sensitivities 

to those measured under high-power 1H decoupling (1-5). The primary motivation for 

low power 1H decoupling is to allow fast MAS frequencies to be used on high-field NMR 

spectrometers, so that the increased chemical shift anisotropy (CSA) sidebands can be 

removed without a concomitant increase in the 1H decoupling field strength or the 

recoupling of the heteronuclear dipolar interaction by the rotary resonance phenomenon 

(6). Low power decoupling also reduces the radio frequency (rf) load on the spectrometer 

and allows shorter recycle delays to be used, thus increasing the sensitivity per unit time. 

This fast MAS - low power decoupling approach has been demonstrated on small amino 

acids and large microcrystalline proteins (1, 3), all of which are rigid solids. However, a 

necessary cost of spinning at 40 kHz or higher is that very small rotors (< 2 mm outer 

diameter) with sample volumes of less than 5 µL must be used. This severely restricts the 

range of systems that can be investigated with this approach. In particular, membrane-

bound peptides and proteins that are already diluted by the lipids cannot be easily studied 

in such small sample volumes.  

 Since the criterion for fast MAS is that the spinning rate is larger than the strength 

of the heteronuclear dipolar interaction to be suppressed, mobile semi-solids such as lipid 

bilayers and peptides embedded in them should benefit from low power decoupling at 

much lower MAS frequencies and rf irradiation fields than required for rigid solids. The 

fact that hydrated lipid membranes are also more susceptible to rf-induced sample heating 

and degradation gives further incentive to explore the regime of low power decoupling 

and fast MAS for hydrated biological membrane samples (7).  

 MAS frequencies of 10-15 kHz have been used before for 1H NMR of lipids (8) 

and mobile proteins (9, 10) in lipid membranes. The narrowing of 1H lines under these 

MAS frequencies in the absence of homonuclear decoupling allows high-resolution 1H-
13C or 1H-15N heteronuclear correlation spectra to be measured with 1H detection, as 

shown for cholesterol in deuterated DMPC bilayers (11), or with 15N detection, as shown 
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for a membrane peptide in deuterated DMPC lipids (12). However, to our knowledge, 

moderately fast MAS frequencies have not been combined with low power 1H decoupling 

to obtain high-resolution heteronuclear spectra. Here we show that for anisotropically 

mobile lipids and membrane peptides with segmental order parameters of 0.25 and 

smaller, moderate MAS speeds achievable on 4 mm o.d. rotors (11-15 kHz) and very low 
1H decoupling fields of 1-2 kHz are sufficient to give similar spectral resolution and 

intensity as spectra measured under high decoupling fields. In practice, low power 1H 

decoupling yields higher resolution than high power decoupling for hydrated lipids, due 

to the fact that longer acquisition times can be used without undesirable rf heating and 

sample degradation. The ability to measure high-resolution heteronuclear spectra of 

membrane systems using moderately fast MAS frequencies and low power 1H decoupling 

allows dilute isotopically labeled membrane peptides to be studied without severe volume 

limitations, thus enhancing sensitivity.  

 

Materials and Methods 

Membrane samples 

All lipids were obtained from Avanti Polar Lipids (Alabaster, AL) and used 

without further purification. POPC and POPC/cholesterol (3:2) membranes were 

prepared by dissolving the lipids in chloroform, drying them under nitrogen gas to 

remove the solvent, then dissolving the lipid film in cyclohexane and lyophilizing 

overnight. The dry and homogeneous lipid powder was suspended in water, subject to 

freeze-thawing five times, then centrifuged at 150,000 g for 3 hours to produce a 

membrane pellet. The pellet was lyophilized, packed into 4 mm rotors, then rehydrated to 

35 wt % water. This procedure gives a low-salt membrane sample with a well defined 

hydration level.  

In addition to lipids, the transmembrane peptide of the influenza A M2 protein 

(M2TMP), which forms a pH-gated proton channel (13), was used to demonstrate the 

validity of this moderate MAS - low power decoupling method on mobile membrane 

peptides (14). The peptide contains uniformly 13C, 15N-labeled residues at V28, S31 and 

L36, and was reconstituted into DLPC bilayers by detergent dialysis as described 
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previously (15). The membrane peptide sample was prepared at pH 7.5, which 

corresponds to the closed state of the proton channel. The sample also contains 

amantadine, which gives higher resolution spectra than the apo peptide (16).  

 

Solid-State NMR experiments 

MAS experiments were carried out on a Bruker DSX-400 spectrometer 

(Karlsruhe, Germany) operating at Larmor frequencies of 400.49 MHz for 1H, 100.70 

MHz for 13C, and 40.58 MHz for 15N. A MAS probe equipped with a 4 mm spinner was 

used for all experiments. 1H-13C and 1H-15N cross polarization (CP) for the peptide-

containing sample was carried out at a spin-lock field strength of 50 kHz for 0.5 ms. 13C 

chemical shifts were externally referenced to the α-Glycine 13C CO resonance at 176.49 

ppm on the TMS scale and 15N chemical shifts were externally referenced to the 15N 

resonance of N-acetylvaline at 122 ppm on the NH3 scale.  

Low power decoupled spectra used the WALTZ-16 composite pulse sequence 

(17) to achieve broadband decoupling. The 1H nutation frequencies ranged from 1 kHz to 

11 kHz, and were measured by direct observation of the 1H spectra of lipids. High power 

decoupled spectra used TPPM decoupling (18) with a field strength of 50 kHz for the 

lipid samples and 63 kHz for the peptide-containing sample.  

Most 13C direct-polarization spectra of lipid-only samples used acquisition times 

of 51 ms with 4096 data points. The time-domain data were zero filled to 16,384 points 

and Fourier-transformed with 3 Hz Lorentzian broadening except when indicated 

otherwise. Longer acquisition times were not used in comparisons of high-power and 

low-powder decoupled spectra, since high power decoupling for more than 50 ms is 

deemed detrimental to the probe and the sample. To determine the ultimate resolution and 

sensitivity of the lipid membranes under 11 kHz MAS, we measured a 1 kHz 1H 

decoupled 13C spectrum of POPC lipids with an acquisition time of 150 ms. For the 

peptide-containing sample, the 13C CP spectra were measured with an acquisition time of 

25.7 ms and processed with 35 Hz Gaussian line broadening, and the 15N CP spectra were 

measured with an acquisition time of 17.6 ms with 70 Hz Gaussian line broadening.  
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Results and Discussion  

Theory for low power decoupling and moderately fast MAS of uniaxially diffusive systems 

 The theory of fast MAS and low power 1H decoupling has been described in 

detail by Ernst et al.(1). Below we briefly summarize this theory and point out the 

differences between uniaxially mobile systems and rigid solids. Under fast MAS and low 

power decoupling, we consider the nuclear spin interactions to be averaged first by MAS 

and then by rf irradiation. For SIN spin systems under infinite speed MAS, the average 

Hamiltonian collapses to the zero-order terms, which contain only interactions expected 

for an isotropic solution, namely isotropic chemical shifts (H iCS) of the I and S spins, 

and the homonuclear (HII
J ) and heteronuclear (HSI

J ) J couplings:  

 

H ωr →∞
(0) =

1
τr

dt
0

τ r
∫ ⋅ H(t) = HS

iCS + HI
iCS + HII

J + HSI
J  (9.1) 

 

Under finite MAS frequencies, we need to consider the first order terms in the average 

Hamiltonian. Higher than first-order terms scale with the MAS frequency as 1 ωr( )2 and 

higher powers, thus are not considered here. The first-order terms result from time-

dependent commutators between the various interactions:  

 

[ ])(),(
2 12

0

1

0

2
)1(

2

tHtHdtdt
i

H
t

r

r

⋅
−

= ∫∫
τ

τ
 (9.2) 

 

In general, there are three non-vanishing cross terms from the above commutator. They 

are the cross term between the I-I homonuclear dipolar coupling and the I-S 

heteronuclear dipolar coupling:   

 

H II ,IS
(1)

=
1

ωr
ωskl

k≠l
∑ SzIkxI ly , (9.3) 

 

the cross term between the I-I homonuclear dipolar coupling and I-spin CSA:  
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H II ,I
(1)

=
1

ωr
ωkl

k≠l
∑ IkxI ly , (9.4) 

 

and the cross term of the I-I homonuclear dipolar coupling with itself:  

 

H II ,II
(1)

=
1

ωr
ωikl

i≠k≠l
∑ IizIkxI ly  (9.5) 

 

In these expressions, the coupling cross terms ω  have the unit of frequency squared 

(rad/s)2 due to the commutation.  

For uniaxially diffusive lipids and peptides in biological membranes, the I-I 

homonuclear coupling cross term (eq. 9.5) vanishes because all motionally averaged 

dipolar couplings within each lipid and between adjacent lipid molecules are parallel to 

the motional axis, the bilayer normal, thus they have the same orientation dependence. 

Analytically, the homonuclear dipolar coupling between spin i and k can be written as 

ωik t( )= δik ⋅ ω β,γ,t( ), where β and γ are the polar coordinates of the local bilayer normal 

with respect to the rotor axis and are the same for all spin pairs, and δik  is the motionally 

averaged coupling constant. As a result, the self commutation of the homonuclear dipolar 

coupling becomes:  

 

HII (t2),HII (t1)[ ]= δik ⋅ ω β,γ, t2( ) 3Iz
i Iz

k − I i ⋅ I k( )
i≠k
∑ , δik ⋅ ω β,γ,t1( ) 3Iz

i Iz
k − I i ⋅ I k( )

i ≠k
∑

 

 
 

 

 
 

= ω β,γ,t2( )ω β,γ,t1( ) δik 3Iz
i Iz

k − I i ⋅ I k( )
i≠k
∑ , δik 3Iz

i Iz
k − I i ⋅ I k( )

i≠k
∑

 

 
 

 

 
 

= 0

(9.6) 

 

The I-spin CSA and I-I dipolar cross term in equation 9.4 does not directly lead to 

S spectral broadening since it only involves the I spins. But the I-I and I-S dipolar cross 

term in equation 9.3 leads to S broadening through the heteronuclear dipolar coupling. To 

obtain narrow S spectra, one needs to decouple at a ω1 nutation frequency either much 
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higher than ωr  or much lower than ωr  but still adequate to remove the remaining S-I 

dipolar interaction. In the latter regime ω1 << ωr , the rotary resonance recoupling 

condition ω1 = nωr  n =1,2( ) does not apply, thus no line broadening from rotary 

resonance will occur.  

 Under the condition that the decoupling field is lower than the spinning rate but 

higher than the MAS-averaged spin interactions in equations (9.3) and (9.4), 

transformation to an interaction frame defined by the rf field and a second averaging lead 

to the zero-order average Hamiltonian:  

 

H
(0)

= HS
iCS + HII

J . (9.7) 

 

Compared to the rigid solid case, no homonuclear dipolar coupling term remains for the 

uniaxially mobile system (1). Comparing equations (9.1), (9.3) and (9.7), it can be seen 

that low power decoupling removes the I-S J-coupling and suppresses the cross term 

between the homonuclear and heteronuclear dipolar coupling.  

 For rigid solids, MAS rates ωr 2π  larger than 40 kHz and rf fields ω1 2π  

smaller than ~20 kHz were found to be the fast spinning and low power decoupling 

regimes, respectively. We can estimate the prefactor ωskl ωr  in equation (9.3) as 

follows. Using the one-bond C-H dipolar coupling of 22 kHz and the geminal H-H 

dipolar coupling of 25 kHz, and assuming an MAS rate of 50 kHz, a CH2 spin system has 

a prefactor of:  

 

  
ωskl

ωr
∝

ω IS ⋅ ω II
ωr

≈
2π ⋅ 22 kHz( )⋅ 2π ⋅ 25 kHz( )

2π ⋅ 50 kHz
≈ 2π ⋅11 kHz, (9.8) 

 

This prefactor matches well the experimental observation that at 50 kHz MAS, a 1H 

decoupling field of less than 15 kHz causes broadening of the CH2 signal (2). For C-H 

spin systems, the prefactor is smaller, about 2.5 kHz, due to the weaker H-H dipolar 
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coupling. Correspondingly, the measured threshold 1H decoupling field decreases to ~8 

kHz, below which line broadening occurs.  

 For uniaxially mobile lipids where the segmental order parameters SCH are in the 

range 0.02 – 0.25 (19), the spinning frequency and decoupling field requirements are 

correspondingly lower. Assuming an intermediate order parameter of 0.10 for a typical 

lipid group, the residual heteronuclear dipolar coupling prefactor for a CH2 group under 

11 kHz MAS can be estimated as:  

 

  
ωskl

ωr
∝

ω IS ⋅ ω II

ωr
≈

2π ⋅ 22⋅ 0.1 kHz( )⋅ 2π ⋅ 25⋅ 0.1 kHz( )
2π ⋅11 kHz

≈ 2π ⋅ 0.5 kHz,(9.9) 

 

Thus, a 1H decoupling field of ~1 kHz should be sufficient to suppress this residual 

coupling. This suggests that moderately fast MAS frequencies that are readily achievable 

on 4 mm rotors may allow lipid membranes and even membrane peptides to be studied 

under extremely low power 1H decoupling. In this ω1 regime, composite pulse sequences 

such as WALTZ-16 (17) are necessary to achieve broadband decoupling.  

 

Low power decoupling of low-viscosity hydrated lipid membranes 

 Figure 9.1(a, b) shows the 13C direct polarization (DP) spectra of hydrated POPC 

membranes under 11 kHz MAS with 1 kHz WALTZ-16 decoupling (a) and 50 kHz 

TPPM decoupling (b). Both spectra were processed with 3 Hz of Lorentzian broadening 

to reduce truncation wiggles. It can be seen that the intensities and linewidths of the low-

power decoupled spectrum is comparable to or better than the high-power decoupled 

spectrum. For a clearer view of the intensities and linewidths, Figure 9.2 shows expanded 

regions of the 13C spectra of the lipid chain CH2 resonance at 31 ppm (a) and the glycerol 

G2 peak at 71 ppm (b) as a function of the 1H decoupling field. These two resonances are 

chosen because they are the most rigid segments in hydrated phosphocholine, as 

manifested by their relatively large C-H order parameters (20), and thus are the most 

difficult sites to decouple well. Figure 9.2 shows that both resonances broaden and 

decrease in intensities with increasing 1H decoupling field ω1 2π , with the minimum 
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intensity at the rotary resonance condition of ω1 = ωr  at 11 kHz. This is expected due to 

the recoupling of the C-H heteronuclear interaction. For all resonances, the maximum 

intensity is observed at the lowest decoupling field of 1 kHz.  

 

Figure 9.1. Direct polarization 13C spectra of hydrated POPC bilayers under 11 kHz MAS at 293 

K with different 1H decoupling methods. (a) 1.0 kHz WALTZ-16 decoupling, with a 50 ms 

acquisition time. (b) 50 kHz TPPM decoupling, with a 50 ms acquisition time. (c) 1.0 kHz 

WALTZ-16 decoupling with a 150 ms acquisition time. Spectra (a) and (b) were processed with 3 

Hz Lorentzian broaderning, while spectrum (c) did not use any line broadening.  

 

 At the HORROR condition of ω1 = ωr 2, it is known that recoupling of the 

homonuclear dipolar coupling I-I enhances I-spin spin diffusion and leads to line 

narrowing of the heteronuclear spectra by self decoupling (21). This effect has been 

observed in rigid 13C-labeled model compounds (2). We do not observe this HORROR 

line narrowing effect at ω1 2π = 5.5 kHz for the lipids (Figure 9.2). This is consistent 

with the suppression of the I-I homonuclear dipolar coupling cross term by uniaxial 
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motion as shown in equation (9.6). In addition, in contrast to rigid solids (2), we do not 

observe line broadening at low decoupling fields of ω1 ωr < 0.25. Down to 1 kHz 

decoupling, the intensity increased monotonically. This is again expected from the 

estimated prefactor for the residual dipolar interactions of lipids (eq. 9.9). When no 1H 

decoupling is applied, the 13C spectrum of POPC membrane under 11 kHz MAS (Figure 

9.3) shows 13C-1H J-splittings with linewidths of 10-25 Hz, which are only slightly larger 

than the linewidths of the best decoupled spectra, which are 7 – 20 Hz. This means that 

11 kHz MAS is already sufficient to suppress most of the residual heteronuclear 

interactions, and low power decoupling mainly serves to suppress the 13C-1H scalar 

coupling in a broadband fashion.  

 

Figure 9.2. Expanded regions of the 13C direct polarization spectra of hydrated POPC lipids. (a) 

Lipid chain CH2 peaks. (b) Lipid glycerol G2 peak. The 1H decoupling method and field strengths 

are indicated above the individual spectra. Dashed lines guide the eye for the maximum intensity. 

  

 A practical advantage of the very low power decoupling under moderately fast 

MAS is that it allows suitably long acquisition times to be used for hydrated membranes. 

With an acquisition time of 50 ms, the lipid spectra still exhibit truncation wiggles for 

many peaks such as the highly averaged headgroup Cγ at 54.6 ppm (Figure 9.1a, b). 

When a full acquisition time of 150 ms was used under 1 kHz decoupling, the linewidths 
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of the lipid 13C spectrum are found to be 7 – 20 Hz (Figure 9.1c). This long acquisition 

time is not possible under high power decoupling conditions. 

 

Limits of applicability: spinning speed, temperature, and mobility 

 To test whether the low-power decoupling and moderately fast MAS approach 

works for a wide range of membrane systems, we investigated the 13C spectral resolution 

and intensity as a function of MAS frequency, temperature, and lipid mobility. Figure 9.4 

shows the glycerol G2 region of the 13C DP spectra of hydrated POPC lipids for a number 

of MAS frequencies under the same 1H decoupling field of 1 kHz. At 9 kHz spinning the 

spectrum shows similar intensity to the 11 kHz MAS spectrum, but decreasing the 

spinning speed to 7 kHz and below clearly decreases the intensities under low power 

decoupling. Thus, for hydrated lipids, the minimum spinning rate necessary to achieve 

MAS averaging of the dipolar interaction is about 10 kHz.  

 

Figure 9.3. POPC 13C direct polarization spectra at 293 K under 11 kHz MAS. Both spectra were 

measured with an acquisition time of 150 ms. (a) WALTZ-16 1H decoupled spectrum with ω1/2π 

= 1 kHz. (b) 1H undecoupled spectrum. The FWHM linewidths of the peaks are 7 – 20 Hz in (a) 

and 10 – 25 Hz in (b).   
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Figure 9.4. Low power decoupled POPC glycerol G2 intensity as a function of MAS frequency 

at 293 K. All spectra were measured with 1.0 kHz WALTZ-16 1H decoupling. Spinning rates are 

(a) 11 kHz, (b) 9 kHz, (c) 7 kHz, and (d) 5 kHz. 

 

 

Figure 9.5. 13C direct polarization spectra of hydrated POPC membranes under 11 kHz MAS as a 

function of temperature and 1H decoupling field strength. Top spectra: 293 K. Bottom spectra: 

258 K. Left column: WALTZ-16 decoupling at 1.0 kHz. Right column: TPPM decoupling at 50 

kHz field strength.  

 

The next two tests explore the effect of increased molecular rigidity on the low power 

decoupling efficiency. When the hydrated POPC membrane is cooled to below its phase 

transition temperature of 270 K, the 13C DP spectra showed higher intensities and 
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narrower lines under higher power decoupling than low power decoupling (Figure 9.5). 

Although we did not measure the C-H order parameters of the gel-phase POPC lipids, 2H 

quadrupolar splittings from the literature suggest that the order parameters increase by a 

factor of 2 (22).  

 Cholesterol-containing membranes are of interest both for understanding the 

fundamental biophysics of domain formation in lipid membranes and for mimicking 

eukaryotic membranes. Addition of cholesterol to phospholipids is well known to make 

the lipid membrane less elastic, with order parameters increasing by about a factor of 2 

(23). Figure 9.6 shows three representative peaks of POPC and cholesterol in the mixed 

POPC/cholesterol (3:2) membrane under 11 kHz MAS and various 1H decoupling fields. 

It can be seen that the moderately fast MAS rate is insufficient to narrow the cholesterol 

ring 13C peaks due to the rigidity of the sterol rings. However, the resolved aliphatic 

peaks of cholesterol such as C26 and C27 at 23.1 ppm vary in intensity with decoupling 

in a similar fashion as the POPC resonances. For the POPC lipids in this membrane 

mixture, the 13C intensities at low power decoupling are similarly narrow as the pure 

POPC sample.  

 

Figure 9.6. Expanded regions of POPC/cholesterol spectra at 293 K under 11 kHz MAS with 

different 1H decoupling fields. (a) POPC glycerol G2 peak. (b) Cholesterol ring C14 and C17 

peaks. (c) Cholesterol aliphatic C26 and C27 peaks and the POPC ω-1 peak. The assignment of 

cholesterol resonances is based on reference (24).  



www.manaraa.com

 

 

157

 

Uniaxially mobile membrane peptides under low power decoupling and moderate MAS 

 Since the basic requirement for moderate MAS and low power decoupling to 

yield high resolution heteronuclear spectra is the presence of large-amplitude fast 

motions that lead to sufficiently low order parameters, the approach should also be 

applicable to polypeptides that undergo fast uniaxial diffusion in lipid membranes. 

Several examples of such membrane protein diffusion have been reported (14, 25-27). 

Hydrated membrane peptide samples often contain significant levels of associated salt, 

thus the reduction of rf irradiation and heating by low power decoupling is highly 

desirable.  

 We use the transmembrane domain of the influenza A M2 protein (M2TMP) to 

demonstrate the low power decoupling method. The M2 protein is a proton channel 

important for the influenza life cycle, and is effectively blocked by the drug amantadine 

(28). The 25-residue transmembrane domain forms a tetrameric helical bundle in lipid 

bilayers (13, 29, 30). In simple phosphocholine membranes such as DLPC, DMPC and 

POPC at physiological temperature, the M2TMP helical bundles undergo rotational 

diffusion around the bilayer normal at rates faster than the 2H quadrupolar interaction 

(14). Typical C-H dipolar order parameters in M2TMP range from 0.4 to 0.6, while the 

variations in the N-H order parameters are larger due to their sensitivity to the helix 

orientation (16, 31). Figure 9.7(a, b) show the 15N CP spectra of amantadine-bound 

M2TMP in DLPC bilayers. The spectra were acquired under 11 kHz MAS with 2 kHz 

WALTZ-16 decoupling and 63 kHz TPPM decoupling. The low-power decoupled 

spectra have 70-80% of the intensities of the high-power decoupled spectra. This is 

remarkable, considering that the overall oligomeric size of the protein is about 11 kDa. 

The rigid-limit one-bond N-H dipolar coupling is about 10 kHz, a factor of two smaller 

than the one-bond C-H dipolar coupling. The nearest neighbor HN-Hα dipolar coupling is 

about 5.2 kHz for a distance of ~2.5 Å. Thus, if we assume a local segmental order 

parameter of ~0.5, the residual N-H dipolar coupling prefactor under 11 kHz MAS is 

estimated as:  
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ωskl

ωr
∝

2π ⋅10⋅ 0.5 kHz( )⋅ 2π ⋅ 5.2 ⋅ 0.5 kHz( )
2π ⋅11 kHz

≈ 2π ⋅1.2 kHz, (9.10) 

 

which explains why the combination of 11-13 kHz MAS and 2 kHz decoupling is 

adequate to give reasonable lineshape. 

 

Figure 9.7. 15N CP spectra of V28, S31, L36-labeled M2TMP at 313 K in DLPC bilayers under 

11 kHz MAS with an acquisition time of 17.6 ms. (a) 2 kHz WALTZ-16 decoupled spectrum. (b) 

63 kHz TPPM decoupled spectrum. Intensities in the low-power decoupled spectra are 70-80% of 

the high-power decoupled intensities. (c) 2 kHz WALTZ-16 decoupled spectrum measured with a 

recycle delay of 1.0 s and 23,040 scans. (d) 63 kHz TPPM decoupled spectrum measured with a 

2.5 s recycle delay and 9216 scans. The fast-recycled low-power decoupled spectra have 1.3 

times higher intensities than the high-power decoupled spectrum in the same total experimental 

time.  

 

 With 2 kHz 1H decoupling the recycle delay is no longer limited by the rf duty 

cycle, thus much faster signal averaging can be carried out. Indeed, the limiting factor in 

the low-power decoupled CP experiments is the 1H T1, which is usually in the hundreds 

of millisecond range for membrane samples. Figure 9.7(c, d) compares the M2TMP 15N 
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CPMAS spectrum acquired with a recycle delay of 1.0 s and 23,040 scans under 2 kHz 

decoupling, with a spectrum acquired under regular high power decoupling but a recycle 

delay of 2.5 s and 9,216 scans. The low-power decoupled spectrum gave ~1.3 times 

higher intensities than the high-power decoupled spectra in the same amount of 

experimental time. 

 To obtain similarly narrow 13C spectra should in principle require higher MAS 

rates and 1H decoupling fields due to the stronger C-H dipolar couplings. Yet Figure 9.8 

shows that the peptide 13C signals with 2 kHz 1H decoupling still have 70-80% of the 

intensities of the high-power decoupled 13C spectrum. However, this comparison is 

limited by the fact that the M2TMP motional rates are not much faster than the C-H 

dipolar couplings at this temperature, so that the 13C resonances are broader than 15N 

peaks even in the high-power decoupled spectrum.  

 
Figure 9.8. 13C CP spectra of V28, S31, and L36-labeled M2TMP in DLPC bilayers at 313 K 

under 11 kHz MAS. Black: TPPM decoupling at 63 kHz. Red: WALTZ-16 decoupling at 2 kHz. 

Peptide 13C peaks are assigned. The low-power decoupled intensities are 70-80% those of the 

high-power decoupled spectra. The two spectra used the same number of scans and recycle 

delays. Similar to Figure 9.7, if the low-power decoupled spectrum were measured with shorter 

recycle delays higher intensities would result in the same experimental time.  

 

 These 13C and 15N peptide spectra indicate that for low power decoupling to be 

useful for membrane peptides, the molecular motion needs to be well into the fast regime, 

and slightly higher MAS frequencies is also desirable to fully recover the intensity of the 

high power decoupled spectra. We predict that 3.2 mm rotors that allow spinning rates of 
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15-20 kHz will provide the best combination of sample volume and low-power 

decoupling efficiency for mobile membrane peptides.  

 

Conclusion 

We have shown that moderate MAS frequencies of 10-15 kHz combined with 

very low 1H decoupling fields of 1-2 kHz are sufficient to yield high-resolution 

heteronuclear spectra of motionally averaged lipid membranes. The fast uniaxial 

diffusion removes the homonuclear dipolar coupling cross terms in the average 

Hamiltonian, thus suppressing spin diffusion. For lipids with order parameters of less 

than 0.25, the low power decoupled 13C spectra have equal intensities compared to the 

high power decoupled spectra at the same acquisition times. But by allowing much longer 

acquisition times to be used, low power decoupling in practice results in significant 

enhancement of sensitivity and resolution. For systems with order parameters of ~ 0.5, 

MAS frequencies of 11 kHz combined with low power decoupling do not fully recover 

the high power intensities. Nevertheless, it is possible to obtain low-power decoupled 15N 

and 13C spectra with 70-80% intensity of the high power spectra on a membrane peptide 

assembly with an effective molecular weight of 11 kDa. This opens up the intriguing 

possibility of determining membrane peptide structures in lipid bilayers using liquid-state 

NMR spectrometers equipped with MAS probes.   
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 Appendix A 

Amino acid FMOC protection 

 

The majority of solid-state NMR techniques used to study peptides in the lipid 

membrane environment used naturally scarce isotopes such as 13C, 15N and 2H. At natural 

abundance these spins are often too dilute to provide enough signal for NMR experiments 

and must be isotopically enriched. There are two ways to include these nuclei in proteins 

that are being studied: expression of the protein with isotopically labeled media or solid-

phase peptide synthesis with isotopically labeled amino acids. While expression is an 

effective way to label entire proteins it often causes spectral resolution problems in 

membrane samples where due to sample heterogeneity 13C and 15N linewidths are often 

~1-2 ppm FWHM. While there are ways to sparsely label proteins using expression (1), 

often times specifically labeled residues are desired. From this point of view solid-phase 

peptide synthesis is an attractive way to prepare peptides with a few isotopically labeled 

residues as long as the peptide is relatively short (<30 residues) and easy to synthesize 

(2). 

 Unfortunately the price of labeled amino acids that include the protecting groups 

required for solid-phase peptide synthesis is considerably higher than the cost of 

unprotected labeled amino acids, and in some cases labeled and protected amino acids are 

not commercially available. Since the protection reaction was designed to be a one step 

reaction with high yield, it is an attractive modification to carry out in the lab. A widely 

used protection strategy is FMOC chemistry and the following outlines the procedure for 

FMOC protection of amino acids with hydrophobic sidechains. Here amino acids with 

sidechain functionality are avoided because they need further protection before being 

used in solid phase peptide synthesis. 

 

Procedure (3, 4) 

1. Add 2 equivalents of sodium bicarbonate to 1 equivalent of amino acid in a round 

bottom flask with enough water for solubility. Some amino acids are not well 
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soluble in water, and up to 50% p-dioxane can be added to help solubility in this 

step. Cool this to ~5° C while stirring with a magnetic stir bar. 

2. Dissolve 1 equivalent of FMOC N-hydroxysuccinimide ester (FMOC-OSu) in p-

dioxane and cool to ~5° C. Then add FMOC-OSu solution into amino acid vessel. 

3. Allow to stir for 1 hour at 0° C, then remove ice bath and let stir overnight. 

4. In the morning, double the volume of the reaction mixture with water to stop 

reaction. Then extract the reaction solution with ethyl acetate. 

5. Take the organic fraction from the extraction and wash with 2% sodium 

bicarbonate 2x, and combine aqueous fractions. The organic fraction here likely 

contains most of the impurities and should be set aside. 

6. Acidify aqueous fraction with 2 M HCl to pH 2. Then extract the acidified 

aqueous solution with ethyl acetate three times, and carefully dry the organic 

fraction with sodium sulfate. 

7. Rotoevaporate the organic product to dryness. If the product was not dried well in 

step 6, it will likely be a viscous liquid. To remove residual solvent re-dissolve the 

product in toluene and dry down again, and repeat as necessary. At this point, the 

product should be dry white powder, with yields from 50-90%. 

 

Purification and analytical methods 

Purification can be carried out on the first (organic) fraction if necessary, best results 

for FMOC glycine and FMOC phenylalanine are achieved on silica gel columns with 

a solvent system of 10:1 toluene:acetic acid. An issue here is the low solubility of the 

products in toluene:acetic acid mixture. Because the solubility is so low, the product 

cannot be added to the column dissolved in the eluent. To allow a column separation 

the FMOC product can be added to the column in the solid state by dissolving it in 

ethyl acetate, adding an equal volume of silica and then drying. This silica/product 

mixture can then be added to the column and eluted as normal. To check purity, use 

thin layer chromatography, mass spectroscopy, and 1H solution NMR. Thin layer 

chromatography can be carried out with the same solvent as used in the column. In 
13C labeled amino acids, 1H solution NMR should be carried out with 13C decoupling 
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to remove 1H-13C J-coupling which makes spectral interpretation difficult, as seen in 

figure A1. 

 

 

Figure A1. 1H spectra of FMOC uniform 13C, 15N leucine, without 13C decoupling 

(black) and with 13C decoupling (red). The removal of the 1J13C 1H interaction by 

broadband 13C decoupling eases the assignment for amino acid protons directly bonded to 

labeled 13C.   
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Appendix B 

Preparation of bicelle samples for solid-state NMR 

 

In solid-state NMR of membrane proteins, aligned membrane samples are often 

used to get information about peptide orientation with respect to the membrane and lipid 

disruption by the peptide. Two of the most common oriented lipid systems used are lipids 

mechanically aligned on glass plates (1) and bicelle samples (2). Both of these aligned 

systems can render the same information (3, 4), but bicelle samples have the benefit of 

being easier and quicker to make while allowing measurement in a probe designed for 

MAS experiments. Here, a method for preparing well oriented peptide containing bicelles 

is given. 

 

Composition of bicelles 

This procedure roughly follows the protocol described by De Angelis and Opella 

(5), while additional references were used for comparison of preparation conditions (2, 6-

8). Bicelle compositions that were prepared are listed in table B1. 

 
Table B1. Bicelle composition for charged and uncharged bicelles. 

Lipids 
Molar Lipid 

Ratios  
Alignment Temp 

(K) 
pH 

 

DMPC/6-O-PC 3.2 302-310 7.0 Uncharged 
DMPC/DMPG/6-O-PC 2.6:0.6:1 304-310 7.0 14% anionic 

 
 

The bicelles prepared here consisted of 35% (w/v) lipid in 100 mM HEPES buffer 

at a pH of 7.0. HEPES was used instead of phosphate buffer because it does not have any 

phosphorous resonances which could interfere with interpretation of the 31P 

characterization spectra of the bicelle solutions. 100 mM buffer is fairly high 

concentration for NMR measurements and there is no reason that lower concentrations 

such as 25 mM cannot be used. The lipid to water ratio was chosen to be at the higher end 

of the range mentioned in the references so that a maximum amount of peptide could be 

put into a 4mm MAS rotor, which with a 2-3mm teflon spacer has space for about 75 µL 
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of bicelle solution. With a lipid/water ratio of 35%, 75 µL of bicelle solution can contain 

about 2.5 mg of peptide (MW ~2500 g/mol) while keeping a relatively low lipid to 

peptide ratio of ~10 (w/w) or ~40 (mole/mole).  

Both DMPC/6-O-PC and DMPC/DMPG/6-O-PC bicelles have been prepared, 

representative spectra are shown in figure B1. Bicelle stability was found to be about 2 

months for peptide containing uncharged bicelles, at which point the alignment started to 

worsen. This is manifested in the broad baseline seen in figure B1 (d), as compared to (c). 

The integrated area of this broad baseline is about 33% of the total intensity and is 

enough of a loss in aligned intensity to make 15N detected spectra have low S/N. The 

stability of bicelles containing charged lipids was not measured, but has been suggested 

to be as short as 2 weeks (5). 

 

 
Figure B1. 31P lineshape of different bicelle samples. Pure bicelles shown are DMPC/6-O-PC 

bicelles (a) along with anionic DMPC/DMPG/6-O-PC bicelles (b). 31P spectra of peptide 

containing bicelles are shown for comparison, (c) a freshly prepared DMPC/6-O-PC/KvAP 

bicelles and (d) the same sample after 2 months. Chemical shifts of the three resonances in (b) are 

as expected from the data shown by Crowell and Macdonald (9). 
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Procedure for preparation of bicelles 

 DMPC/6-O-PC bicelle samples are prepared by first weighing out ~5 mg of 6-O-

PC into a 1.5 mL eppendorf tube. Due to the high hydroscopic properties of the short 

chain lipid, this should then dried on the lyopholizer for 2-4 hours. A weight lost of up to 

10% is commonly observed during this step due to water being removed. The now dried 

6-O-PC can then be reweighed, and the dry mass used to calculate the appropriate 

amount of DMPC required to make a DMPC/6-O-PC ratio of 3.2. Then the proper mass 

of DMPC should be added along with enough buffer to bring the mixture to a lipid/water 

ratio of 35% (w/v). The mixture resulting at this step is heterogenous, with water sitting 

on top of the lipid. To mix these different phases the mixture can be heated to ~42° C, 

cooled to 0° C on ice, then vortexed for 30 seconds, with a final step of gentle 

centrifugation to return the mixture to the bottom of the tube. After three of these cycles, 

the lipid is usually mostly dissolved into the water, and the sample will be a fairly 

homogenous solution. Even if there are no obvious particles floating in the solution, the 

next step should be to set the sample in a refrigerator overnight to allow the lipid to 

dissolve and the sample to completely equilibrate. 

 The next day, the bicelle solution should be clear and viscous at 42° C while 

flowing easily at 0° C. If this simple viscosity test is passed, the quality and magnetic 

alignability of the bicelles can be checked by 31P NMR. In the past, when volumes lower 

than 50 µL were used for this measurement, broad lines and poor alignment was observed 

even when the bicelle solution was good, so for this step at least 50 µL of bicelle should 

be checked. Another possible difficulty at this stage is that the temperature of alignment 

can be different than expected for a couple of reasons. Close inspection of the phase 

diagrams for bicelles (6) shows that small variations in the DMPC/6-O-PC ratio and 

hydration ratio can cause large changes in the alignment temperature. Also, the 

temperature experience by the sample in the magnet may be different than the 

temperature observed by the spectrometer. For this reason, a broad range of temperatures 

(298-320 K) may need to be scanned before good alignment is seen. 

 After a well aligned bicelle sample has been made and characterized, it can be 

added directly to the peptide. Here, sample heterogeneity is again an issue but it can be 
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overcome by the heat-freeze-vortex-centrifuge method described above. If after heating 

and cooling 3 times the peptide is still stuck to the bottom, then a clean needle can be 

used to physically stir the mixture and speed up dissolution. Needle mixing was usually 

required for the very hydrophobic KvAP S4 peptide and not required for M2 or the 

hydrophilic IB736. Regardless of how the peptide is mixed into the lipid solution, after 

the peptide is added to the bicelle solution the resulting mixture should be allowed to sit 

overnight to equilibrate. For all the peptide containing bicelles prepared so far the 

samples are viscous at all temperatures and the solution is most easily transferred at warm 

temperatures. In general, 31P measurements have shown that the best alignment 

temperature is the same after addition of peptide, and the 31P lines are not broadened that 

much. For a perspective of how much 31P linewidth changes upon addition of peptide, 

compare the spectra in figure B1 (a) and (c).  
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Appendix C 

Peptide Purification 

 

 It is commonly accepted that to study peptides reconstituted in lipid bilayers the 

peptide samples should be >95% pure. However, proteins that are produced by FMOC 

synthesis are not of this purity after they are cleaved from the resin. In order for these 

peptides to be used for solid-state NMR studies they need to be purified further. There are 

many ways of purifying proteins, including gel filtration and ion-exchange 

chromatography, but the most common method for peptides involves reverse-phase high 

performance liquid chromatography (RP-HPLC) (1, 2). RP-HPLC is a broadly applied 

technique with a wide array of stationary and mobile phases that can be used to separate 

many compounds (3). Here we will focus on a common setup for the separation of 

peptides: a stationary phase of C18 functionality on silica particles combined with a 

mobile phase of water/acetonitrile with an ion pairing reagent of TFA at 0.1% (1). In 

these RP-HPLC separations, it is the hydrophobicity of the proteins that determines the 

retention time. 

 

Solubility, gradient 

To carryout a good separation of peptides the first step is to determine the 

solubility parameters for the peptide. Due to the high content of charged sidechains most 

antimicrobial peptides, including TP-I and PG-1, are readily soluble in water. More 

hydrophobic peptides such as the S4 segment of KvAP or the transmembrane domain of 

M2 require up to 40% acetonitrile to be solublized. After the solubility of the peptide is 

determined, the proper gradient can be chosen. A common gradient (4) that is used for 

amphipathic membrane peptides is shown in Figure C1.  

To ensure that a proper separation can be achieved with this gradient, it can be 

first tested on a small amount of the peptide of interest with an analytical column as 

shown in Figure C2a. For these tests only 0.1 mg of peptide in 100 µL of water is 

required. As seen in Figure C2a, the largest peak has a reasonable retention time and 
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decent resolution from most impurities. The identity of the main peak fraction can be 

collected and checked for identity by MALDI-MS to ensure that it is the desired product. 

 

 

Figure C1. HPLC gradient for separation of water soluble amphipathic peptides. Gradient starts 

at 0% acetonitrile and goes to 60% acetonitrile in the first 60 minutes. This increases to 100% 

acetonitrile by the eighty minute mark, and is held at 100% until the end of the run at 90 minutes.  

 

To use HPLC to purify the amount of peptide needed for solid-state NMR 

experiments (>2 mg) preparatory scale HPLC is required. This is because in analytical 

scale HPLC the surface volume of stationary phase is not large enough to interact with 

the large amount of solute. If large amounts of solute are added to a small volume 

column, overloading will result leading to degraded peak quality and a decrease in 

resolution. If analytical and preparatory columns with the same type of stationary phase 

are used, well known (3) theroretical calculations can be used to scale the loading and 

flow rates, which allows similar retention times despite large changes in column size: 

 ( )
( )2

initial

2
final

initial
D

D
rate Flowrate Flow ×=  [C1] 

 ( )
( ) initial

2
initial

final
2

final
initial

LD

LD
LoadLoad ×=   [C2] 

 

Where D is the diameter and L is the length of each column. As can be seen by the very 

reproducible separations in Figure 2a and 2b, in practice these equations can be used to 

change between columns with little difference between the observed separations. 
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Figure C2. RP-HPLC separation of TPA4 peptide on C18 column with water/acetonitrile mobile 

phase. Shown are (a) analytical separation of crude product, (b) preparatory separation with 

yellow highlighting the collected peak and (c) analytical separation after the preparatory step. 

 

Injection 

There are a few concerns when injecting crude solid-phase synthesis products into 

the HPLC. First, the products should be filtered to remove any particulate impurities by 

using commercially available syringe filters. Second, injection of large amounts of 

peptide requiring large volumes of solvent can be difficult since semi-prep scale HPLC 

injection loops often have volumes in the range of 5-10 mL. It may be difficult to 

dissolve 50 mg of peptide in such a small volume, in which case multiple injection steps 

can be used. First inject the maximum allowed volume of dissolved peptide and allow 5 

minutes for this solute plug to be pushed out of the injection loop and onto the beginning 

of the column. Repeat until all of the sample solution is used then start the separation. 

Multi-step injections save time and solvent and are useful on preparatory columns which 
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have broad peaks compared to analytical columns. However, this method of injection will 

yield a poorer separation than several single injection separations and should be avoided 

if possible. The injector itself can be a source of impurities and should be cleaned 

between separations. To clean the injector, putting 10 mL of methanol through the 

injection process is adequate. 

 

Collection 

Collecting the peaks that come out of preparatory separations is critical. In order 

for this to be done in a proper manner, the flow delay between detector and the sample 

collector was determined with dye to be 2 seconds for a flow rate of 10 mL/min. 

Parameters that are required for proper detector/sample collector communication are 

shown in Table C1. These are explicitly shown here because they are not well 

documented in the users manual. 

 

Settings on ProStar sample collector.  Settings in method 
Setting Value  325 settings Value 
Type Peak detection  Bunch rate 8 

Rack Type 12/13 mm  Noise length 64 
Last Tube N/A  Response time 1 second 

Pattern Standard  Scaling factor 1 
Method Fraction by time     

Fraction Time 55 seconds  CIM settings Value 
Flow delay 2 seconds  Data rate 10 Hz 

Peak detector 100 mV  Output (Prerun) 0.1 V 
Peak threshold 15%  Output (1.0 minutes) 0.1 V 

Peak width 1 minute  Relay 1 Pulse 
Non-peak/window collect  Relay 2 Off 

Restart none  Relay 3 Off 
  

Table C1. Settings for ProStar 704 sample collector and settings inside the collection method for 

CIM and 325 detector. These settings are for a flow rate of 10 mL/min. 

 

Unfortunately, at the moderate flow rate of 10 mL/minute, the sample collector does not 

switch tubes fast enough to avoid wasting a significant amount of sample. For example, 
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the estimated tube switching time is 2 seconds so the peak collected in Figure C2b would 

have lost a full 2 mL of eluent during the switching times.  

 lost mL 2
switch

sec 2

min

mL 10

sec 60

min 1
switches 6 =























  [C3] 

This can be overcome by watching the separation and collecting the waste stream while 

the peak of interest is eluting. 

 

Desalting 

After the peptide is purified by HPLC it is important to remove excess TFA salt 

that has been associated with the peptide during the purification process, this is especially 

true for NMR experiments which utilize 19F as an observed nucleus. Salt removal can be 

done by two methods: gel filtration and dialysis. Both of these methods take advantage of 

the size differential between salts such as TFA and the desired protein. Dialysis uses a 

semi-permiable membrane that allows small molecules to pass while holding in larger 

molecules (5). Gel-filtration chromatography uses a column packed with porous material 

into which small molecules can diffuse but from which large molecules are excluded. 

Since large molecules are excluded from the pores they travel though the column in the 

intersital volume and are followed by the salts which elute in the interstitial plus pore 

volume (3).  Pre-packaged commercially available gel columns such as the PD-10 

desalting column (Amersham Biosciences, Piscataway, NJ) allow easy desalting for 

moderate amounts of water soluble protein. First, drain away storage solution and wash 

the column with 25 mL of your buffer. Then place your peptide containing sample on the 

column and elute, collecting 1 mL fractions. TP-I usually comes off in fractions 3-9, the 

presence of peptide in these fractions can be checked for by U.V. absorption at 280 nm. 

The column purification procedure can be repeated to remove more salt. 

Dialysis is carried out in dialysis tubing (Spectra/Por dialysis membranes, 

Spectrum Labs, Rancho Dominguez, CA) with a molecular cutoff not larger than one half 

of the molecular weight of the peptide. Peptide containing solution is put into the dialysis 

bag which is then sealed and put into a 0.1% HCl solution and stirred, changing water 
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every 12 hours for 3 days. This yields low salt content peptide that can be used for solid-

state NMR studies. 

 

General care 

Semi-preparatory scale reverse-phase guard columns are fairly expensive, so in order to 

keep these in good working order a few guidelines should be followed. First, the column 

should always be operated with guard column which will collect any irreversibly bound 

solutes and keep them from binding to the column. Secondly, since these columns are 

silica based they should be used in the pH range of 2-8 to avoid defuntionalization (low 

pH) and dissolution of the silica (high pH). Because of the vulnerability of the column to 

acidic or basic conditions it should be stored in pure HPLC grade methanol whenever it is 

not in use. Finally, since the HPLC injector is designed for use with blunt needles, no 

sharp needles should be used for injections, otherwise you risk ruining the injector. 
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 Appendix D 

Simulation Codes 

 

 
Helix orientation simulation code 
 
PROGRAM NAME: Ideal_18_res_ahelix_11-25-08.f 
 
c     program calc Pisa wheel pattern For Ideal 
c     alpha helix. phi=-64.1, psi=-40 
c     Ideal helix coordinents added by TFD 11/25/08 
c    18 residue helix, first residue made by insightII was deleted 
c     Origonally started with helixprogM2correct.f 
 
c Rho is defined by the CN vector of the 4th residue 
 
c     Fixed error of different rho values give slightly different  
c     PISA patterns 
c TFD 11/25/08 
 
        parameter       (nmaxx=256,nmaxy=256) 
 real    redat(0:nmaxx,0:nmaxy),b0(3),aleng(100) 
 real  
reNH(0:nmaxx,0:nmaxy),reCSA(0:nmaxx,0:nmaxy) 
 real  rePISA(0:nmaxx,0:nmaxy) 
 real  vNH(100,3),uNH(100,3),uCO(100,3), 
betax(3),ubetax(3) 
 real  
vCN(100,3),uCN(100,3),aCNleng(100),uNH2(100,3) 
 real  vNC(100,3),uNC(100,3),aNCleng(100) 
 real testbetax(3),omegNH(100),omegCSA(100) 
 real uniNH(3),uniNC(3),vs11(3),vs22(3),vs33(3) 
 real uniCO(3),testCO2(3), 
vCO(100,3),uniCO1(3),uniCO2(3) 
 real v1s11(3),v2s11(3),v1s22(3),v2s22(3) 
 real uniNH1(3),uniNH2(3),aCOleng(100) 
 real v1s33(3),v2s33(3),vs22intopl(3) 
 real cols11(100,3),cols22(100,3),cols33(100,3) 
 real col2s11(100,3),col2s22(100,3),col2s33(100,3) 
 integer num(100) 
 real beB0betax,gammabetax 
 integer int1, outnumt, tcount, inr,outnumr,  
& rcount,t,r,b,p 
 character*32 outfile, outb,outp 
        common redat,nx,ny,outfile 
 real testperp(3),testperp2(3) 
  
c........................Input............................ 
 
       write(6,*)'Calculation of 2 series of 1D spectra' 
       write(6,*)'(1) CO CSA spectra' 
  write(6,*)'(2) N csa spectra' 
  write(6,*)'from given N-H, C=O, and CO-N vectors' 
  write(6,*)'and the resulting 2D spectrum' 
 
 write(6,*)'delta NH coupling (kHz, ca. 10) -->' 
 write(6,*)'10' 
 delta=10.0 
 
 write(6,*)'Width of NH range (kHz, ca. 20.2) -->' 
 write(6,*)'20.2' 
 read(5,*)swNH 

  
 write(6,*)'15N CSA:' 
        write(6,*)'s11= 64, s22= 77, s33= 217 (order matters!)' 
 write(6,*)'chem. shift s11,s22,s33 -->' 
        read(5,*) s11,s22,s33 
 
        write(6,*)'ppm range of w2 axis (e.g. 300, 0) -->' 
        read(5,*)ppmmin,ppmmax 
 
        write(6,*)'# of frequency points (e.g. 100) -->' 
        read(5,*)nx 
 nxd2=nx/2 
 wNHscal=(nx-1)/swNH 
 wCSAscal=(nx-1)/(ppmmax-ppmmin) 
  
 
 ny0=18  !number of NH bonds 
 ny=ny0 
  
c.................................................... 
c.....Ideal Helix  phi= -64.1 deg psi= -40 deg......... 
c.................................................... 
 
INSERT PDB COORDINATES HERE, E.G. 
 
c IDEAL a-Helix with phi=-64.1, psi=-40 
 
 vNH(1,1)= 
 vNH(1,2)= 
 vNH(1,3)= 
 
 vCN(1,1)= 
 vCN(1,2)= 
 vCN(1,3)= 
 
 vCO(1,1)= 
 vCO(1,2)= 
 vCO(1,3)= 
 
 vNC(1,1)= 
 vNC(1,2)= 
 vNC(1,3)= 
c---------------------------------------------------- 
c calculate unit vectors 
c---------------------------------------------------- 
 
 write(6,*)'lengths of N-H vectors:' 
 do j=1,ny 
  
   aleng(j)=0. 
   do i=1,3 
     aleng(j)=aleng(j)+vNH(j,i)*vNH(j,i) 
   enddo 
   aleng(j)=sqrt(aleng(j)) 
 write(6,*)j,aleng(j) 
   do i=1,3 
    uNH(j,i)=vNH(j,i)/aleng(j) 
   enddo 
 enddo !j residue number 
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 write(6,*)'lengths of CO-N vectors:' 
 do j=1,ny 
   aCNleng(j)=0. 
   do i=1,3 
     aCNleng(j)=aCNleng(j)+vCN(j,i)*vCN(j,i) 
   enddo 
   aCNleng(j)=sqrt(aCNleng(j)) 
 write(6,*)j,aCNleng(j) 
   do i=1,3 
    uCN(j,i)=vCN(j,i)/aCNleng(j) 
   enddo 
 enddo   !j residue number 
    
 write(6,*)'lengths of N-Ca vectors:' 
 do j=1,ny 
   aNCleng(j)=0. 
   do i=1,3 
     aNCleng(j)=aNCleng(j)+vNC(j,i)*vNC(j,i) 
   enddo 
   aNCleng(j)=sqrt(aNCleng(j)) 
 write(6,*)j,aNCleng(j) 
   do i=1,3 
    uNC(j,i)=vNC(j,i)/aNCleng(j) 
   enddo 
 enddo !j residue number 
 
c---------------------------------------------------- 
c determine principal axes of 15N CSAs 
c---------------------------------------------------- 
 
 write(6,*)'angle of N-H & s33 (e.g. -17) -->' 
 write(6,*)'-17' 
 read(5,*)ochiNHs33 
 
 write(6,*)'out-of-plane angle of s22 (e.g. 25)' 
      write(6,*)'25' 
 read(5,*)alphoutofplane 
 
 do j=1,ny 
  
   do i=1,3 
     uniNH(i)=uNH(j,i) 
     uniNC(i)=uNC(j,i) 
   enddo 
 
  chiNHs33=ochiNHs33 
  
c for geometry see Hong et al., JMR 135, p. 169, Fig. 2 
c cross product of N-Ca and N-H yields s22(into-plane) axis 
 
   call crossprodU(uniNC,uniNH,vs22intopl) 
 
c rotate N-H around s22(into-plane) axis to give s33 axis 
 
   call rotaxis(vs22intopl,chiNHs33,uniNH,vs33) 
 
c rotate s22(into-plane) around s33 axis to give s22 axis (tilted) 
 
   call rotaxis(vs33,alphoutofplane,vs22intopl,vs22) 
 
c cross product of s22 and s33 gives s11 
 
   call crossprodU(vs22,vs33,vs11) 
    
 do i=1,3 
   cols11(j,i)=vs11(i) 
   cols22(j,i)=vs22(i) 
   cols33(j,i)=vs33(i) 
 enddo 

 enddo   !j residue number 
 goto 20  !skip CO calculation (needs to be renamed, c
 otherwise functional) 
  
c---------------------------------------------------- 
c determine the orientation of the a-helix axis 
c---------------------------------------------------- 
 
20      write(6,*)'define a-helix axis and ' 
        write(6,*)'starting residue for a-helix axis (e.g.13)-->' 
 write(6,*)'start from #1 residue' 
 nstart=1 
c read(5,*) nstart 
  
 betax(1)=0. 
 betax(2)=0. 
 betax(3)=0. 
 betaxlen=0. 
  
 do j=nstart,nstart+18 
  
   do i=1,3 
    betax(i)=betax(i)+vNH(j,i) 
c    betax(i)=betax(i)+vCN(j,i) 
   enddo 
    
 enddo 
 
 
 do i=1,3 
   betaxlen=betaxlen+betax(i)*betax(i) 
 enddo 
 betaxlen=sqrt(betaxlen) 
 do i=1,3 
   ubetax(i)=betax(i)/betaxlen 
 enddo 
 write(6,*)ubetax(1),ubetax(2),ubetax(3) 
 write(6,*)betaxlen 
  
 thebetax=acosd(ubetax(3)) 
 if(sind(thebetax).ne.0) then 
   sinphi=ubetax(2)/sind(thebetax) 
   cosphi=ubetax(1)/sind(thebetax) 
   if(sinphi.gt.0) then 
     phibetax=acosd(cosphi) 
   else 
     phibetax=360.-acosd(cosphi) 
   endif 
 else 
   phibetax=0. 
 endif 
 write(6,*)'a-helix axis (theta,phi)=  

& ',thebetax,phibetax 
  
c---------------------------------------------------- 
c restrict to the labeled residues of interest 
c---------------------------------------------------- 
 

write(6,*)'15N-labeled residue numbers (end: -1, 
& all:-99)-->' 
 write(6,*)'1-18' 
 
 numresi=18 
 do k=1,numresi 
   num(k)=k 
 enddo 
      
 do k=1,numresi 
   do i=1,3 
     uNH(k,i)=uNH(num(k),i) 
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     cols11(k,i)=cols11(num(k),i) 
     cols22(k,i)=cols22(num(k),i) 
     cols33(k,i)=cols33(num(k),i) 
   enddo 
 enddo 
 
 write(6,*)'Number of residues = ',numresi 
 
c auto ouput many results 
2001 write(6,*)'angle range and incre between B0 and a-
helix axis -->' 
 read(5,*)beB0betax0, beB0betax1, int1 
 write(6,*)'rotation angle range and incre along a- 
c  helix axis -->' 
 read(5,*) gammabetax0, gammabetax1, inr 
c cal cycle 
 outnumt=(beB0betax1-beB0betax0)/int1+1 
 tcount=0 
100 beB0betax=beB0betax0+tcount*int1 
 b0(1)=0  
 b0(2)=sind(beB0betax) !B0 in the y-z 
c  plane, same as sheet plane 
 b0(3)=cosd(beB0betax) 
 tcount=tcount+1 
 outnumr=(gammabetax1-gammabetax0)/inr+1 
 rcount=0 
200 gammabetax=gammabetax0+rcount*inr 
 
c---------------------------------------------------- 
c now transform to make the b-strand axis the z axis 
c definition of rho angle 
c---------------------------------------------------- 
       call rotvect(phibetax,thebetax,0, 
     &              ubetax,testbetax) 
       write(6,*)'a-helix axis, should be 0 0 1:' 
       write(6,*)testbetax(1),testbetax(2),testbetax(3)   
       write(6,*) 
 
c calculate plane of sheet to determine gammabetax (angle  
c betw) 
c rho angle is defined using the CN vector (rotated to the XY  
c plane) so it is  perpendicular to the a-helix  
  
       do i=1,3 
c use #4 residue 
  uniCO1(i)=uCN(4,i) 
       enddo 
 
 call rotvect(phibetax,thebetax,0, !rotate uniCO1 to into 
strand 
     &              uniCO1,uniCO2) !axis frame, with z=strand axis 
 
       gammabetold=acosd(uniCO2(2))  !uniCO2(2) is the  
c   dot product between 
c   uniCO2 and the y-axis (0 1 0).        
 
       call crossprodU(uniCO2,testbetax,testperp) 
 
       gammabet0=acosd(testperp(1))  !testperp(1) is the  
c dot product between testperp and the x-axis (1 0 0).        
 
       if(testperp(2).lt.0) then 
       gammabet0=-gammabet0 
       endif 
 
        call rotvect(0,0,gammabet0, 
     &              testperp,testperp2) 
       write(6,*)'Test x-axis should be 1 0 0' 
       write(6,*)testperp2(1),testperp2(2),testperp2(3)  
 

       write(6,*) 'gammebet0= ',gammabet0 
 gammabetax=gammabetax+gammabet0 
 
c---------------------------------------------------- 
c now calculate frequencies 
c---------------------------------------------------- 
 
c apply rotation to all selected residues  
 
 do j=1,numresi 
  
   do i=1,3 
     uniNH1(i)=uNH(j,i) 
     v1s11(i)=cols11(j,i) 
     v1s22(i)=cols22(j,i) 
     v1s33(i)=cols33(j,i) 
   enddo 
    
      call rotvect(phibetax,thebetax,gammabetax, 
     &              uniNH1,uniNH2) 
       call rotvect(phibetax,thebetax,gammabetax, 
     &              v1s11,v2s11) 
       call rotvect(phibetax,thebetax,gammabetax, 
     &              v1s22,v2s22) 
       call rotvect(phibetax,thebetax,gammabetax, 
     &              v1s33,v2s33) 
   do i=1,3 
     uNH2(j,i)=uniNH2(i) !N-H bond of  
c residue j in new frame 
     col2s11(j,i)=v2s11(i) !s11 axis of residue  
c j in new frame 
     col2s22(j,i)=v2s22(i) !s22 axis of residue  
c j in new frame 
     col2s33(j,i)=v2s33(i) !s33 axis of residue  
c j in new frame 
c write(6,*)'col2s11',col2s11(j,i) 
   enddo 
    
 enddo !j residue number 
  
 do j=1,numresi 
 do iw=1,nx 
   reNH(iw,j)=0. 
   reCSA(iw,j)=0. 
 enddo 
 enddo 
 
 do jw=1,nx 
 do iw=1,nx 
   rePISA(iw,jw)=0. 
   redat(iw,jw)=0. 
 enddo 
 enddo 
 
c t & r output 
  
 write(6,*)'t', int(beB0betax),'r',int(gammabetax- 
               &  gammabet0) 
 
 do j=1,numresi 
  
c if (j.ne.9) then 
c cos(theta)=B0*NH dot product 
  costheta=0. 
  cosgam1=0. !direction cosine 
  cosgam2=0. 
  cosgam3=0. 
  do i=1,3 
   costheta=costheta+b0(i)*uNH2(j,i) 
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   cosgam1=cosgam1+b0(i)*col2s11(j,i) !direction 
cosine 
   cosgam2=cosgam2+b0(i)*col2s22(j,i) 
   cosgam3=cosgam3+b0(i)*col2s33(j,i) 
 enddo 
 
c calculate frequencies 
 
  wNH=0.5*delta*(3*costheta**2-1) 
  
wCSA=s11*cosgam1**2+s22*cosgam2**2+s33*cosgam3**2 
  omegNH(j)=wNH 
  omegCSA(j)=wCSA 
  iwNHp=nx/2+wNH*wNHscal 
  iwNHm=nx/2-wNH*wNHscal !2nd transition 
         iwCSA=(ppmmax-wCSA)*wCSAscal+1 
   
c residue # shift 1 here 
  write(6,*)'residue number: ', num(j) 

write(6,*)'NH dipolar coupl., kHz & pts:  
& ',wNH,iwNHp,iwNHm 
write(6,*)'N chemical shift, ppm & pts: ', wCSA,  
& iwCSA 

 
   redat(j,1)=abs(wNH) 
   redat(j,2)=wCSA 
 
c put unit intensity into spectrum at the frequencies 
 
  reNH(iwNHp,j)=reNH(iwNHp,j)+1. !slice j is 
spectrum of NH bond j 
  reNH(iwNHm,j)=reNH(iwNHm,j)+1. !slice j is 
spectrum of NH bond j 
 
  reCSA(iwCSA,j)=reCSA(iwCSA,j)+1. 
   
  rePISA(iwNHp,iwCSA)=1.  !2D corr. spectrum 
  rePISA(iwNHm,iwCSA)=1.  !2D corr. spectrum 
  

enddo  ! j residue number 
c..................................................... 
c save PISA wheel 
 
         write(6,*)'write 2D NH/CSA (PISA wheel) to the disk' 
  write(6,*)'read with read2dbin (100) in Matlab' 
c         call wrte2d(int(beB0betax),int(gammabetax- 
c  gammabet0)) 
   b=int(beB0betax) 
   p=int(gammabetax-gammabet0) 
  
   WRITE(6,*) 'Name of output file -->' 
   if (b .lt. 100) then 
     outb=char(int(b/10)+48)//char(b-int(b/10)*10+48) 
   else  
     outb=char(int(b/100)+48)//char(int((b- 
     &  int(b/100)*100)/10)+48) 
     & //char(b-int(b/10)*10+48)  
   endif 
   if (p .lt. 100) then 
     outp=char(int(p/10)+48)//char(p-int(p/10)*10+48) 
   else  
     outp=char(int(p/100)+48)//char(int((p- 
     & int(p/100)*100)/10)+48) 
     & //char(p-int(p/10)*10+48)  
   endif 
   outfile='t'//trim(outb)//'r'//trim(outp) 
 
435   format(a32) 
        open(unit=12,file=outfile,form='unformatted') 
        write(12) ((redat(i,j),i=1,numresi),j=1,2) 

        close(12) 
  
 rcount=rcount+1 
 if (rcount.lt.outnumr) goto 200 
 if (tcount.lt.outnumt) goto 100 
  
 write(6,*)'re-run b-strand orientation (0//1) -->' 
 read(5,*)irerun 
 if(irerun.eq.1) goto 2001   
  
 write(6,*)'re-run b-strand orientation (0//1) -->' 
 read(5,*)irerun 
 if(irerun.eq.1) goto 2001   
c 
         stop 
         end 
   
c ******************* end main program 
**************************** 
c__________________________________________________ 
        subroutine      write1D 
c__________________________________________________ 
 real  spect(2000) 
 character*32 outfile 
        common spect,nx,outfile 
c -------------------------------------------------------------------- 
        WRITE(6,*) 'SUBROUTINE WRTE1D:' 
        WRITE(6,*) 'Name of output file -->' 
        READ(5,435) outfile 
435     format(a32) 
        open(unit=12,file=outfile,form='unformatted',status='new') 
        write(12) (spect(i),i=1,nx) 
        close(12) 
        return 
        end 
 
ADD SUBROUTINES: 
ROTVECT 
ROTAXIS 
CROSSPRODU 
DOTPROD 
WRTE2D 
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Spin diffusion simulation code 
 
PROGRAM NAME: lattsd1dmemTD.f 
 
c        program lattice spin diffusion 1D 
c 
c       numerical simulation of spindiffusion in lamellar systems     
c............................................................ 
        parameter (nmax=50000) 
        integer nx,ny 
        real    p(1024),palt(1024),ratl(1024),ratr(1024) 
        real    rat2l(1024),rat2r(1024),aMagncr(512),aMagnso(512) 
        character*32 infile,outfile 
   real   redat(0:512,0:128) 
        real   cmpdat(512,128) 
        common cmpdat,redat,nx,ny,infile,outfile 
c............................................................ 
        write(6,*)'lattice spin diffusion 1D' 
        write(6,*) 
        write(6,*)'Interphases consist of 50% source and 50% 
detection' 
        write(6,*)'components.' 
10      write(6,*)'source thickness: entire middle of' 
   write(6,*)'bilayer, (ca. 1 nm) -->' 
c       read(5,*,err=10) dso 
 
15      write(6,*)'first sink thickness for a monolayer (ca. 1.4 nm)' 
        read(5,*,err=15) dsink 
 
20      write(6,*)'thickness interphase for a monolayer (ca 0.2 nm)-
->' 
c       read(5,*,err=20) dif 
30      write(6,*)'thickness detection region: one protein'  
   write(6,*)'thickness (ca. 1 nm) -->' 
c       read(5,*,err=30) ddehalf 
   dde=2*ddehalf 
35      write(6,*)'site (proton) spacing a (nm) (ca. 0.2 nm)' 
c       read(5,*,err=35) a 
   nxab=nint(dso/a) 
        nxab=nxab/2                !basis for (discrete) domain sizes 
        ndso=2*nxab+1   
        ndsoa=nint(dso/a) 
        ieven=1            
        if(ndsoa.eq.ndso) ieven=0 
        write(6,*)ieven 
 
        ndso=ndso-ieven      !No. of source grid,for 1.1nm, 5 lines 
    ndsink=nint(dsink/a) 
        ndif=nint(dif/a)     
        ndde=nint(dde/a)     
        ndrep=ndso+2*ndsink+2*ndif+ndde 

!number of total grid lines 
 
        write(6,*)'number of total grid lines = ',ndrep 
 
        dso=ndso*a  !modified source thickness 
   dsink=ndsink*a 
        dif=ndif*a 
        dde=ndde*a 
        drep=ndrep*a 
  
        nxbc=nxab+ndsink      !contact of first sink and interphase 
 
        write(6,*) 
   write(6,*)'dso=',dso,'nm, dsink=',dsink,'nm' 
   write(6,*)'dif=',dif,'nm, dde=',dde,'nm' 
        write(6,*) 
c       write(6,*)'Thus, the fraction of detection component is ', 
c     &             (dde+dif)/drep 

        write(6,*)'the long period is ',drep,'nm' 
        write(6,*) 

write(6,*)'integrate source (0) or non- 
& source(=de) compon. (1)' 

c        write(6,*)'or source region (highly mobile) (2) -->' 
c       read(5,*)intede 
        if (intede.ne.0.and.intede.ne.2) intede=1 
 
40      write(6,*)'D source (nm*nm/ms) -->' 
c       read(5,*,err=40) Diffso 
 
c45   write(6,*)'D sink (nm*nm/ms) -->' 
c          read(5,*,err=45) Diffsink 
  
50      write(6,*)'D interface (nm*nm/ms) -->' 
        read(5,*,err=50) Diffif 
60      write(6,*)'D detection (nm*nm/ms) -->' 
c       read(5,*,err=60) Diffde 
 
70        write(6,*)'tm initial (ms) -->' 
c       read(5,*,err=70) tmanf 
71        write(6,*)'tm final (ms) -->' 
c       read(5,*,err=71) tmend 
72      write(6,*)'number of tm-points' 
        write(6,*)'(e.g. 100, <128) -->' 
c       read(5,*,err=72) ntm 
 
        ndomd2=1  !number of repeat domains 
        iplot=0 
        write(6,*)'plot M(x,t)?  --> (0//1)' 
c       read(5,*)iplot 
        nxmin=(2.*ndomd2+2.)*ndrep  
        nx=nxmin         !total No. of grid lines for all repeats 
   write(6,*)'4 full domains, minimum of nx: ',nx 
        nstep=1 
  
        nxd2=nx/2              !nxd2= (center of source) -ieven 
        nx=2*nxd2              !make even numbers 
nlamr=nxd2+ndrep           

        !center of right lamella, periodic boundary point 
        ibox=nxab 
        Pboxlim=1 
 
80      write(6,*)'max. transition rate per step (ca. 0.1, <0.5) -->' 
c       read(5,*,err=80) rat 
        write(6,*) 
          diffmax=max(Diffde,Diffif,Diffso) 
c         write(6,*)'max D=',diffmax 
        deltat=rat/diffmax*a*a 
        write(6,*)'time steps (us)',deltat*1000 
        write(6,*) 
        imax=nint(tmend/deltat) 
        write(6,*)'maximum number of steps ',imax 
        write(6,*) 
        diffway=1 
 
        deinif=0. 
        ndifl=nxd2+nxbc 
        ndifr=ndifl+ndif 
        do n=ndifl+1,ndifr 
          deinif=deinif+(n-ndifl)*2./ndif 
        enddo 
 
       delimit=(2.*ibox+1-ieven)/ndrep*(ndde+deinif)*100./ndrep 
        write(6,*)'equilibrium value: ',delimit,'  %' 
c       ........................................................ 
c       relate diffusion coefficient to diffusion rates 
c       -------------------------------------------------------- 
        if(Diffde.eq.Diffmax) then 
         ratde=rat 
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         ratso=ratde*Diffso/Diffde 
     ratsink=ratde*Diffsink/Diffde 
         ratif=ratde*Diffif/Diffde 
        endif 
 
   if(Diffso.eq.Diffmax) then 
         ratso=rat 
         ratde=ratso*Diffde/Diffso 
         ratif=ratso*Diffif/Diffso 
     ratsink=ratso*Diffsink/Diffso 
        endif 
 
   if(Diffif.eq.Diffmax) then 
         ratif=rat 
         ratde=ratif*Diffde/Diffif 
     ratsink=ratif*Diffsink/Diffif 
         ratso=ratif*Diffso/Diffif 
        endif 
  
   if(Diffsink.eq.Diffmax) then 
         ratsink=rat 
         ratde=ratsink*Diffde/Diffsink 
     ratif=ratsink*Diffif/Diffsink 
         ratso=ratsink*Diffso/Diffsink 
        endif 
 
c       assign rates to grid points 
c       first, paint everything with ratde 
 
        do n=1,nx 
          ratl(n)=ratde 
          ratr(n)=ratde 
        enddo 
  
c       assign rates in source 
 
        do l=-ndomd2,ndomd2 
        nsol=l*ndrep+nxd2-nxbc+ieven 
        nsor=l*ndrep+nxd2+nxbc 
        do n=nsol+1,nsor-1 
          ratl(n)=ratso 
          ratr(n)=ratso 
        enddo 
          ratr(nsol)=ratso 
          ratl(nsor)=ratso 
c       assign rates in interface 
 
        nifl=nsol-ndif       !ieven already in nsol 
        do n=nifl+1,nsol 
          ratl(n)=ratif 
          ratr(n-1)=ratl(n) 
        enddo 
          ratl(nifl)=ratde 
        nifr=nsor+ndif 
        do n=nsor+1,nifr 
          ratl(n)=ratif 
          ratr(n-1)=ratl(n) 
        enddo 
          ratr(nifr)=ratde 
        ndel=nifl-ndde+2 !+2: sufficient overlap in de at l-1,l,l+1 
        do n=ndel+1,nifl-1 
          ratl(n)=ratde 
          ratr(n)=ratde 
        enddo 
        nder=nifr+ndde-2 
        do n=nifr+1,nder-1 
          ratl(n)=ratde 
          ratr(n)=ratde 
        enddo 
        enddo   !l 

c      write(6,*)'Positions with interfacial rates:' 
   do n=1,nx 
     if(ratl(n).eq.ratif) write(6,*)n 
   enddo 
c       ........................................................ 
c       initialize distribution of magnetization at t = 0 
c       -------------------------------------------------------- 
        do n=1,nx 
          palt(n)=0. 
        enddo 
        ijmax=0 
        do l=-ndomd2,ndomd2 
          nboxl=l*ndrep+nxd2-ibox+ieven 
          nboxr=l*ndrep+nxd2+ibox 
        palt(nboxl)=Pboxlim 
        palt(nboxr)=Pboxlim 
        p(nboxl)=Pboxlim 
        p(nboxr)=Pboxlim 
        do n=nboxl+1,nboxr-1 
          palt(n)=1. 
          p(n)=1. 
        enddo 
        write(6,*)p(nboxl),p(nboxr) 
        enddo 
c       ......................................................... 
c       run discretized diffusion 
c       --------------------------------------------------------- 
        do j=1,ntm 
        ijmaxold=ijmax 
        tm=tmanf+(j-1)**2*(tmend-tmanf)/(ntm-1)**2 
        ijmax=nint(tm/deltat) 
        if(diffway.ge.(0.9)) then 
        do i=1,ijmax-ijmaxold 
        do n=nxd2,nlamr-1          !ndrep-1 points 
          p(n)=palt(n)*(1.-ratl(n)-ratr(n) ) 
     &    +ratr(n-1)*palt(n-1)+ratl(n+1)*palt(n+1) 
        enddo 
        do n=nxd2,nlamr-1 
          palt(n)=p(n) 
        enddo 
        palt(nxd2-1)=p(nlamr-1) 
        palt(nlamr)=p(nxd2)     !periodic boundary conditions 
        enddo 
c 
        else 
        do i=1,ijmax-ijmaxold 
        do n=nxd2,nlamr-1          !ndrep-1 points 
          p(n)=palt(n)*(1.-ratl(n)-ratr(n) 
     &    -.125*(rat2l(n)+rat2r(n))  ) 
     &    +ratr(n-1)*palt(n-1)+ratl(n+1)*palt(n+1) 
     &    +.125*( rat2r(n-2)*palt(n-2)+rat2l(n+2)*palt(n+2) ) 
        enddo 
        do n=nxd2,nlamr-1 
          palt(n)=p(n) 
        enddo 
        palt(nxd2-1)=p(nlamr-1) 
        palt(nxd2-2)=p(nlamr-2) 
        palt(nlamr)=p(nxd2)     !periodic boundary conditions 
        palt(nlamr+1)=p(nxd2+1) 
        enddo 
        endif 
c 
        do n=nstep,nx,nstep 
          ishift=0 
          if(ieven.eq.1.and.n.lt.nxd2) ishift=1 
          redat(n/nstep,j)= 
     &    palt(nxd2-ishift+mod(jiabs(nxd2-n),ndrep)) 
        enddo 
c       .....................................  
c       Integration over detection region 
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c       ------------------------------------- 
        ndifl=nxd2+nxbc 
        ndifr=ndifl+ndif 
        if (intede.eq.1) then 
         do n=ndifl+1,ndifr 
          aMagncr(j)=aMagncr(j)+p(n)*(n-ndifl)*2./ndif !*2.: 2 
interfaces 
         enddo 
         ndetl=nxd2+nxbc+ndif 
         ndetr=ndetl+ndde 
         do n=ndetl+1,ndetr 
          aMagncr(j)=aMagncr(j)+p(n) 
         enddo 
        else 
         amagnso(j)=0. 
         if (ieven.eq.0) amagnso(j)=p(nxd2) 
         do n=nxd2+1-ieven,ndifl 
          aMagnso(j)=aMagnso(j)+2*p(n) 
         enddo 
         if (intede.eq.0) then 
          do n=ndifl+1,ndifr 
         aMagnso(j)=aMagnso(j)+p(n)*(ndifr-n+1)*2./ndif 

!*2.: 2 interphases 
          enddo 
         endif 
        endif 
 
        aMagncr(j)=aMagncr(j)/ndrep*100. 
        aMagnso(j)=aMagnso(j)/ndrep*100. 
        amagncrlim=aMagncr(j)+2.*p(ndetl)/ndrep*100. 
        enddo      !j 
c 
        write(6,*)'equilibrium: ',delimit 
c       .........................................  
c       save magnetization distribution  
c       ----------------------------------------- 
        if(iplot.eq.1) then 
   write(6,*)'write data to file' 
   write(6,*) 
          ny=ntm 
          nx=nx/nstep 
   write(6,*)'Maximum nx = ',nx 
   write(6,*)'Number of points per domain ',ndrep 
   write(6,*)'Reduce nx to (e.g. # in previous line) -->' 
   read(5,*)nx 
   write(6,*)'# of time points ny = ',ny 
          write(6,*) 
         write(6,*)'save M(x,t) data :' 
         call wrte2d 
        endif 
c       ........................................................... 
c       save sorption curve and parameters 
c       ----------------------------------------------------------- 
        do i=1,512 
        do j=1,3 
          cmpdat(i,j)=(0.,0.)         
        enddo 
        enddo 
c 
        do mt=1,ntm 

cmpdat(mt,1)=sqrt(tmanf+(tmend-tmanf)*(mt- 
   & 1.)**2/(ntm-1.)**2) 

         cmpdat(mt,2)=aMagncr(mt)/delimit*100. 
         if (intede.ne.1) cmpdat(mt,2)=aMagnso(mt) 
        enddo 
        cmpdat(1,3)=dso 
        cmpdat(2,3)=dif 
        cmpdat(3,3)=dde 
        cmpdat(4,3)=Diffso 
        cmpdat(5,3)=(Diffso+Diffde)/2 

        cmpdat(6,3)=Diffde 
        cmpdat(7,3)=amagncr(ntm)/delimit*100. 
 
        nx=max(ntm,7) 
        ny=3 
        write(6,*) 
        write(6,*)'save I(t) curve:' 
 
         write(6,*)'save as ASCII (1) or bin for Matlab (0) -->' 
c   read(5,*)iasc 
         if(iasc.eq.1) then   !write sqrt(t) and M(t) for Kaleidagraph 
         call wrte2dasc 
        else        !write just M(t) for Matlab as binary 
        ny=1 
   do mt=1,ntm 
         redat(mt,1)=aMagncr(mt)/delimit*100. 
         if (intede.ne.1) redat(mt,1)=aMagnso(mt) 
        enddo 
   call wrte2d 
        endif  
c 
        write(6,*)'type 0 to stop' 
        read(5,*)idummy 
        
        stop 
        end 
c -------------------------------------------------------------------- 
        subroutine      wrte2dasc 
c -------------------------------------------------------------------- 
      
c Add WRTE2D SUBROUTINES HERE 
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